AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.105 0.749 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.710
Model: OLS Adj. R-squared: 0.664
Method: Least Squares F-statistic: 15.47
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.46e-05
Time: 04:10:17 Log-Likelihood: -98.885
No. Observations: 23 AIC: 205.8
Df Residuals: 19 BIC: 210.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -47.4896 89.982 -0.528 0.604 -235.823 140.844
C(dose)[T.1] 296.0007 124.709 2.374 0.028 34.981 557.021
expression 16.9700 14.985 1.132 0.272 -14.394 48.334
expression:C(dose)[T.1] -41.7372 21.299 -1.960 0.065 -86.316 2.841
Omnibus: 1.766 Durbin-Watson: 2.089
Prob(Omnibus): 0.414 Jarque-Bera (JB): 1.020
Skew: -0.081 Prob(JB): 0.600
Kurtosis: 1.981 Cond. No. 238.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.64
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.69e-05
Time: 04:10:17 Log-Likelihood: -101.00
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 76.3261 68.465 1.115 0.278 -66.488 219.141
C(dose)[T.1] 52.2256 9.394 5.559 0.000 32.629 71.822
expression -3.6907 11.380 -0.324 0.749 -27.429 20.047
Omnibus: 0.441 Durbin-Watson: 1.828
Prob(Omnibus): 0.802 Jarque-Bera (JB): 0.567
Skew: 0.158 Prob(JB): 0.753
Kurtosis: 2.298 Cond. No. 94.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:10:17 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.111
Model: OLS Adj. R-squared: 0.069
Method: Least Squares F-statistic: 2.633
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.120
Time: 04:10:17 Log-Likelihood: -111.75
No. Observations: 23 AIC: 227.5
Df Residuals: 21 BIC: 229.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 236.2917 96.723 2.443 0.023 35.144 437.439
expression -26.7705 16.496 -1.623 0.120 -61.077 7.536
Omnibus: 3.505 Durbin-Watson: 2.479
Prob(Omnibus): 0.173 Jarque-Bera (JB): 1.384
Skew: 0.065 Prob(JB): 0.500
Kurtosis: 1.805 Cond. No. 85.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.386 0.546 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.504
Model: OLS Adj. R-squared: 0.369
Method: Least Squares F-statistic: 3.723
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0455
Time: 04:10:17 Log-Likelihood: -70.044
No. Observations: 15 AIC: 148.1
Df Residuals: 11 BIC: 150.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -63.3818 121.508 -0.522 0.612 -330.819 204.056
C(dose)[T.1] 208.1788 173.875 1.197 0.256 -174.517 590.874
expression 21.7188 20.085 1.081 0.303 -22.489 65.927
expression:C(dose)[T.1] -26.4179 28.821 -0.917 0.379 -89.852 37.016
Omnibus: 2.486 Durbin-Watson: 0.896
Prob(Omnibus): 0.289 Jarque-Bera (JB): 1.541
Skew: -0.778 Prob(JB): 0.463
Kurtosis: 2.783 Cond. No. 183.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.466
Model: OLS Adj. R-squared: 0.377
Method: Least Squares F-statistic: 5.235
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0232
Time: 04:10:17 Log-Likelihood: -70.596
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 13.8971 86.917 0.160 0.876 -175.478 203.272
C(dose)[T.1] 49.4428 15.498 3.190 0.008 15.676 83.209
expression 8.8880 14.308 0.621 0.546 -22.287 40.063
Omnibus: 2.413 Durbin-Watson: 0.755
Prob(Omnibus): 0.299 Jarque-Bera (JB): 1.735
Skew: -0.798 Prob(JB): 0.420
Kurtosis: 2.519 Cond. No. 69.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:10:17 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.013
Model: OLS Adj. R-squared: -0.063
Method: Least Squares F-statistic: 0.1707
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.686
Time: 04:10:17 Log-Likelihood: -75.202
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 47.2853 112.700 0.420 0.682 -196.188 290.759
expression 7.7198 18.683 0.413 0.686 -32.641 48.081
Omnibus: 1.229 Durbin-Watson: 1.597
Prob(Omnibus): 0.541 Jarque-Bera (JB): 0.811
Skew: 0.171 Prob(JB): 0.667
Kurtosis: 1.914 Cond. No. 69.2