AIM Score vs. Gene Expression 
		Full X range:
		
 
		 
			
		
		Auto X range:
		
 
		
		Group Comparisons: Boxplots
		 
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.115 | 0.738 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.662 | 
  | Model: | OLS | Adj. R-squared: | 0.608 | 
  | Method: | Least Squares | F-statistic: | 12.39 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 0.000101 | 
  | Time: | 14:37:09 | Log-Likelihood: | -100.64 | 
  | No. Observations: | 23 | AIC: | 209.3 | 
  | Df Residuals: | 19 | BIC: | 213.8 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -29.2521 | 159.657 | -0.183 | 0.857 | -363.417   304.913 | 
  | C(dose)[T.1] | 536.0640 | 620.114 | 0.864 | 0.398 | -761.849  1833.977 | 
  | expression | 9.2710 | 17.722 | 0.523 | 0.607 | -27.822    46.364 | 
  | expression:C(dose)[T.1] | -54.1742 | 69.677 | -0.778 | 0.446 | -200.010    91.662 | 
  | Omnibus: | 0.136 | Durbin-Watson: | 2.022 | 
  | Prob(Omnibus): | 0.934 | Jarque-Bera (JB): | 0.354 | 
  | Skew: | 0.056 | Prob(JB): | 0.838 | 
  | Kurtosis: | 2.403 | Cond. No. | 1.44e+03 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.651 | 
  | Model: | OLS | Adj. R-squared: | 0.616 | 
  | Method: | Least Squares | F-statistic: | 18.66 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 2.68e-05 | 
  | Time: | 14:37:09 | Log-Likelihood: | -101.00 | 
  | No. Observations: | 23 | AIC: | 208.0 | 
  | Df Residuals: | 20 | BIC: | 211.4 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 2.2974 | 152.879 | 0.015 | 0.988 | -316.604   321.198 | 
  | C(dose)[T.1] | 53.9751 | 8.944 | 6.035 | 0.000 | 35.318    72.632 | 
  | expression | 5.7664 | 16.969 | 0.340 | 0.738 | -29.630    41.163 | 
  | Omnibus: | 0.422 | Durbin-Watson: | 1.895 | 
  | Prob(Omnibus): | 0.810 | Jarque-Bera (JB): | 0.539 | 
  | Skew: | 0.041 | Prob(JB): | 0.764 | 
  | Kurtosis: | 2.255 | Cond. No. | 318. | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.649 | 
  | Model: | OLS | Adj. R-squared: | 0.632 | 
  | Method: | Least Squares | F-statistic: | 38.84 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 3.51e-06 | 
  | Time: | 14:37:09 | Log-Likelihood: | -101.06 | 
  | No. Observations: | 23 | AIC: | 206.1 | 
  | Df Residuals: | 21 | BIC: | 208.4 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900    66.517 | 
  | C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539    71.135 | 
  | Omnibus: | 0.322 | Durbin-Watson: | 1.888 | 
  | Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 | 
  | Skew: | 0.060 | Prob(JB): | 0.785 | 
  | Kurtosis: | 2.299 | Cond. No. | 2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.016 | 
  | Model: | OLS | Adj. R-squared: | -0.031 | 
  | Method: | Least Squares | F-statistic: | 0.3346 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 0.569 | 
  | Time: | 14:37:09 | Log-Likelihood: | -112.92 | 
  | No. Observations: | 23 | AIC: | 229.8 | 
  | Df Residuals: | 21 | BIC: | 232.1 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 220.4909 | 243.476 | 0.906 | 0.375 | -285.844   726.826 | 
  | expression | -15.7299 | 27.194 | -0.578 | 0.569 | -72.283    40.823 | 
  | Omnibus: | 2.377 | Durbin-Watson: | 2.465 | 
  | Prob(Omnibus): | 0.305 | Jarque-Bera (JB): | 1.253 | 
  | Skew: | 0.199 | Prob(JB): | 0.534 | 
  | Kurtosis: | 1.928 | Cond. No. | 308. | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.462 | 0.510 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.587 | 
  | Model: | OLS | Adj. R-squared: | 0.475 | 
  | Method: | Least Squares | F-statistic: | 5.219 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 0.0175 | 
  | Time: | 14:37:09 | Log-Likelihood: | -68.661 | 
  | No. Observations: | 15 | AIC: | 145.3 | 
  | Df Residuals: | 11 | BIC: | 148.2 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -392.2342 | 257.675 | -1.522 | 0.156 | -959.373   174.904 | 
  | C(dose)[T.1] | 678.4375 | 350.992 | 1.933 | 0.079 | -94.091  1450.966 | 
  | expression | 50.9269 | 28.525 | 1.785 | 0.102 | -11.856   113.710 | 
  | expression:C(dose)[T.1] | -70.7704 | 39.877 | -1.775 | 0.104 | -158.538    16.997 | 
  | Omnibus: | 0.749 | Durbin-Watson: | 1.659 | 
  | Prob(Omnibus): | 0.688 | Jarque-Bera (JB): | 0.598 | 
  | Skew: | -0.429 | Prob(JB): | 0.741 | 
  | Kurtosis: | 2.530 | Cond. No. | 588. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.469 | 
  | Model: | OLS | Adj. R-squared: | 0.381 | 
  | Method: | Least Squares | F-statistic: | 5.304 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 0.0224 | 
  | Time: | 14:37:09 | Log-Likelihood: | -70.550 | 
  | No. Observations: | 15 | AIC: | 147.1 | 
  | Df Residuals: | 12 | BIC: | 149.2 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -65.3738 | 195.689 | -0.334 | 0.744 | -491.744   360.996 | 
  | C(dose)[T.1] | 56.2616 | 18.617 | 3.022 | 0.011 | 15.700    96.823 | 
  | expression | 14.7134 | 21.645 | 0.680 | 0.510 | -32.446    61.873 | 
  | Omnibus: | 5.986 | Durbin-Watson: | 0.924 | 
  | Prob(Omnibus): | 0.050 | Jarque-Bera (JB): | 3.302 | 
  | Skew: | -1.108 | Prob(JB): | 0.192 | 
  | Kurtosis: | 3.611 | Cond. No. | 227. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.449 | 
  | Model: | OLS | Adj. R-squared: | 0.406 | 
  | Method: | Least Squares | F-statistic: | 10.58 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 0.00629 | 
  | Time: | 14:37:09 | Log-Likelihood: | -70.833 | 
  | No. Observations: | 15 | AIC: | 145.7 | 
  | Df Residuals: | 13 | BIC: | 147.1 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570    91.287 | 
  | C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527    81.866 | 
  | Omnibus: | 2.713 | Durbin-Watson: | 0.810 | 
  | Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 | 
  | Skew: | -0.843 | Prob(JB): | 0.393 | 
  | Kurtosis: | 2.619 | Cond. No. | 2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.065 | 
  | Model: | OLS | Adj. R-squared: | -0.007 | 
  | Method: | Least Squares | F-statistic: | 0.9071 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 0.358 | 
  | Time: | 14:37:09 | Log-Likelihood: | -74.794 | 
  | No. Observations: | 15 | AIC: | 153.6 | 
  | Df Residuals: | 13 | BIC: | 155.0 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 284.9039 | 201.033 | 1.417 | 0.180 | -149.401   719.208 | 
  | expression | -21.8062 | 22.896 | -0.952 | 0.358 | -71.270    27.657 | 
  | Omnibus: | 0.372 | Durbin-Watson: | 1.277 | 
  | Prob(Omnibus): | 0.830 | Jarque-Bera (JB): | 0.220 | 
  | Skew: | -0.255 | Prob(JB): | 0.896 | 
  | Kurtosis: | 2.698 | Cond. No. | 182. |