AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.115 0.738 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.608
Method: Least Squares F-statistic: 12.39
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000101
Time: 04:42:58 Log-Likelihood: -100.64
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -29.2521 159.657 -0.183 0.857 -363.417 304.913
C(dose)[T.1] 536.0640 620.114 0.864 0.398 -761.849 1833.977
expression 9.2710 17.722 0.523 0.607 -27.822 46.364
expression:C(dose)[T.1] -54.1742 69.677 -0.778 0.446 -200.010 91.662
Omnibus: 0.136 Durbin-Watson: 2.022
Prob(Omnibus): 0.934 Jarque-Bera (JB): 0.354
Skew: 0.056 Prob(JB): 0.838
Kurtosis: 2.403 Cond. No. 1.44e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.66
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.68e-05
Time: 04:42:58 Log-Likelihood: -101.00
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 2.2974 152.879 0.015 0.988 -316.604 321.198
C(dose)[T.1] 53.9751 8.944 6.035 0.000 35.318 72.632
expression 5.7664 16.969 0.340 0.738 -29.630 41.163
Omnibus: 0.422 Durbin-Watson: 1.895
Prob(Omnibus): 0.810 Jarque-Bera (JB): 0.539
Skew: 0.041 Prob(JB): 0.764
Kurtosis: 2.255 Cond. No. 318.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:42:58 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.016
Model: OLS Adj. R-squared: -0.031
Method: Least Squares F-statistic: 0.3346
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.569
Time: 04:42:58 Log-Likelihood: -112.92
No. Observations: 23 AIC: 229.8
Df Residuals: 21 BIC: 232.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 220.4909 243.476 0.906 0.375 -285.844 726.826
expression -15.7299 27.194 -0.578 0.569 -72.283 40.823
Omnibus: 2.377 Durbin-Watson: 2.465
Prob(Omnibus): 0.305 Jarque-Bera (JB): 1.253
Skew: 0.199 Prob(JB): 0.534
Kurtosis: 1.928 Cond. No. 308.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.462 0.510 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.587
Model: OLS Adj. R-squared: 0.475
Method: Least Squares F-statistic: 5.219
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0175
Time: 04:42:58 Log-Likelihood: -68.661
No. Observations: 15 AIC: 145.3
Df Residuals: 11 BIC: 148.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -392.2342 257.675 -1.522 0.156 -959.373 174.904
C(dose)[T.1] 678.4375 350.992 1.933 0.079 -94.091 1450.966
expression 50.9269 28.525 1.785 0.102 -11.856 113.710
expression:C(dose)[T.1] -70.7704 39.877 -1.775 0.104 -158.538 16.997
Omnibus: 0.749 Durbin-Watson: 1.659
Prob(Omnibus): 0.688 Jarque-Bera (JB): 0.598
Skew: -0.429 Prob(JB): 0.741
Kurtosis: 2.530 Cond. No. 588.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.469
Model: OLS Adj. R-squared: 0.381
Method: Least Squares F-statistic: 5.304
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0224
Time: 04:42:58 Log-Likelihood: -70.550
No. Observations: 15 AIC: 147.1
Df Residuals: 12 BIC: 149.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -65.3738 195.689 -0.334 0.744 -491.744 360.996
C(dose)[T.1] 56.2616 18.617 3.022 0.011 15.700 96.823
expression 14.7134 21.645 0.680 0.510 -32.446 61.873
Omnibus: 5.986 Durbin-Watson: 0.924
Prob(Omnibus): 0.050 Jarque-Bera (JB): 3.302
Skew: -1.108 Prob(JB): 0.192
Kurtosis: 3.611 Cond. No. 227.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:42:58 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.065
Model: OLS Adj. R-squared: -0.007
Method: Least Squares F-statistic: 0.9071
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.358
Time: 04:42:58 Log-Likelihood: -74.794
No. Observations: 15 AIC: 153.6
Df Residuals: 13 BIC: 155.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 284.9039 201.033 1.417 0.180 -149.401 719.208
expression -21.8062 22.896 -0.952 0.358 -71.270 27.657
Omnibus: 0.372 Durbin-Watson: 1.277
Prob(Omnibus): 0.830 Jarque-Bera (JB): 0.220
Skew: -0.255 Prob(JB): 0.896
Kurtosis: 2.698 Cond. No. 182.