AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.008 0.931 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.594
Method: Least Squares F-statistic: 11.72
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000142
Time: 04:15:05 Log-Likelihood: -101.06
No. Observations: 23 AIC: 210.1
Df Residuals: 19 BIC: 214.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 55.2227 112.296 0.492 0.629 -179.815 290.261
C(dose)[T.1] 44.1335 135.087 0.327 0.747 -238.608 326.875
expression -0.1640 18.123 -0.009 0.993 -38.095 37.767
expression:C(dose)[T.1] 1.4916 21.806 0.068 0.946 -44.149 47.132
Omnibus: 0.330 Durbin-Watson: 1.907
Prob(Omnibus): 0.848 Jarque-Bera (JB): 0.492
Skew: 0.086 Prob(JB): 0.782
Kurtosis: 2.304 Cond. No. 270.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.51
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.82e-05
Time: 04:15:05 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 48.8488 61.088 0.800 0.433 -78.579 176.276
C(dose)[T.1] 53.3532 8.770 6.084 0.000 35.059 71.647
expression 0.8663 9.825 0.088 0.931 -19.628 21.361
Omnibus: 0.321 Durbin-Watson: 1.903
Prob(Omnibus): 0.852 Jarque-Bera (JB): 0.485
Skew: 0.068 Prob(JB): 0.785
Kurtosis: 2.302 Cond. No. 88.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:15:06 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.048
Method: Least Squares F-statistic: 0.0005463
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.982
Time: 04:15:06 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 82.0544 100.249 0.819 0.422 -126.425 290.534
expression -0.3783 16.184 -0.023 0.982 -34.036 33.279
Omnibus: 3.384 Durbin-Watson: 2.485
Prob(Omnibus): 0.184 Jarque-Bera (JB): 1.585
Skew: 0.289 Prob(JB): 0.453
Kurtosis: 1.851 Cond. No. 88.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.176 0.683 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.612
Model: OLS Adj. R-squared: 0.506
Method: Least Squares F-statistic: 5.779
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0127
Time: 04:15:06 Log-Likelihood: -68.203
No. Observations: 15 AIC: 144.4
Df Residuals: 11 BIC: 147.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 306.6640 129.054 2.376 0.037 22.617 590.711
C(dose)[T.1] -312.2493 172.026 -1.815 0.097 -690.876 66.377
expression -39.3649 21.170 -1.859 0.090 -85.961 7.231
expression:C(dose)[T.1] 60.5448 28.881 2.096 0.060 -3.022 124.111
Omnibus: 0.967 Durbin-Watson: 1.655
Prob(Omnibus): 0.617 Jarque-Bera (JB): 0.870
Skew: -0.463 Prob(JB): 0.647
Kurtosis: 2.269 Cond. No. 206.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.457
Model: OLS Adj. R-squared: 0.366
Method: Least Squares F-statistic: 5.044
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0257
Time: 04:15:06 Log-Likelihood: -70.724
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 108.9552 99.779 1.092 0.296 -108.445 326.355
C(dose)[T.1] 47.0968 16.410 2.870 0.014 11.343 82.851
expression -6.8330 16.310 -0.419 0.683 -42.370 28.704
Omnibus: 3.764 Durbin-Watson: 0.881
Prob(Omnibus): 0.152 Jarque-Bera (JB): 2.098
Skew: -0.914 Prob(JB): 0.350
Kurtosis: 3.120 Cond. No. 78.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:15:06 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.084
Model: OLS Adj. R-squared: 0.013
Method: Least Squares F-statistic: 1.189
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.295
Time: 04:15:06 Log-Likelihood: -74.644
No. Observations: 15 AIC: 153.3
Df Residuals: 13 BIC: 154.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 218.6194 115.002 1.901 0.080 -29.827 467.066
expression -21.1301 19.378 -1.090 0.295 -62.993 20.733
Omnibus: 1.183 Durbin-Watson: 1.562
Prob(Omnibus): 0.554 Jarque-Bera (JB): 0.852
Skew: 0.265 Prob(JB): 0.653
Kurtosis: 1.960 Cond. No. 72.2