AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.430 0.520 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.672
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 12.96
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.70e-05
Time: 04:56:58 Log-Likelihood: -100.30
No. Observations: 23 AIC: 208.6
Df Residuals: 19 BIC: 213.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 23.0807 138.168 0.167 0.869 -266.108 312.269
C(dose)[T.1] 232.6302 191.286 1.216 0.239 -167.736 632.996
expression 4.0284 17.864 0.226 0.824 -33.362 41.419
expression:C(dose)[T.1] -23.2298 24.746 -0.939 0.360 -75.024 28.565
Omnibus: 0.178 Durbin-Watson: 1.821
Prob(Omnibus): 0.915 Jarque-Bera (JB): 0.191
Skew: -0.165 Prob(JB): 0.909
Kurtosis: 2.700 Cond. No. 453.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.11
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.29e-05
Time: 04:56:58 Log-Likelihood: -100.82
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 116.6232 95.426 1.222 0.236 -82.431 315.678
C(dose)[T.1] 53.2519 8.678 6.136 0.000 35.150 71.354
expression -8.0775 12.325 -0.655 0.520 -33.788 17.632
Omnibus: 0.207 Durbin-Watson: 1.921
Prob(Omnibus): 0.902 Jarque-Bera (JB): 0.411
Skew: -0.027 Prob(JB): 0.814
Kurtosis: 2.348 Cond. No. 173.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:56:58 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.010
Model: OLS Adj. R-squared: -0.038
Method: Least Squares F-statistic: 0.2034
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.657
Time: 04:56:58 Log-Likelihood: -112.99
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 150.8389 157.844 0.956 0.350 -177.417 479.094
expression -9.2103 20.420 -0.451 0.657 -51.676 33.255
Omnibus: 4.501 Durbin-Watson: 2.524
Prob(Omnibus): 0.105 Jarque-Bera (JB): 1.668
Skew: 0.212 Prob(JB): 0.434
Kurtosis: 1.751 Cond. No. 173.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.418 0.530 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.503
Model: OLS Adj. R-squared: 0.367
Method: Least Squares F-statistic: 3.708
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0459
Time: 04:56:58 Log-Likelihood: -70.059
No. Observations: 15 AIC: 148.1
Df Residuals: 11 BIC: 151.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 0.2131 68.198 0.003 0.998 -149.889 150.315
C(dose)[T.1] 160.3631 120.904 1.326 0.212 -105.744 426.471
expression 12.1356 12.140 1.000 0.339 -14.583 38.855
expression:C(dose)[T.1] -21.3599 24.112 -0.886 0.395 -74.430 31.710
Omnibus: 3.043 Durbin-Watson: 0.792
Prob(Omnibus): 0.218 Jarque-Bera (JB): 1.708
Skew: -0.827 Prob(JB): 0.426
Kurtosis: 2.995 Cond. No. 99.5

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.467
Model: OLS Adj. R-squared: 0.379
Method: Least Squares F-statistic: 5.264
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0228
Time: 04:56:58 Log-Likelihood: -70.576
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 30.2017 58.669 0.515 0.616 -97.628 158.031
C(dose)[T.1] 54.3988 17.439 3.119 0.009 16.402 92.395
expression 6.7212 10.394 0.647 0.530 -15.926 29.368
Omnibus: 1.884 Durbin-Watson: 0.866
Prob(Omnibus): 0.390 Jarque-Bera (JB): 1.380
Skew: -0.699 Prob(JB): 0.502
Kurtosis: 2.495 Cond. No. 41.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:56:58 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.035
Model: OLS Adj. R-squared: -0.039
Method: Least Squares F-statistic: 0.4773
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.502
Time: 04:56:58 Log-Likelihood: -75.030
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 135.8885 61.926 2.194 0.047 2.105 269.672
expression -8.2370 11.923 -0.691 0.502 -33.995 17.521
Omnibus: 0.431 Durbin-Watson: 1.505
Prob(Omnibus): 0.806 Jarque-Bera (JB): 0.450
Skew: -0.326 Prob(JB): 0.799
Kurtosis: 2.456 Cond. No. 33.4