AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.745 0.067 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.726
Model: OLS Adj. R-squared: 0.683
Method: Least Squares F-statistic: 16.79
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.42e-05
Time: 04:42:52 Log-Likelihood: -98.210
No. Observations: 23 AIC: 204.4
Df Residuals: 19 BIC: 209.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 90.0206 50.040 1.799 0.088 -14.714 194.756
C(dose)[T.1] 142.3845 75.925 1.875 0.076 -16.527 301.296
expression -4.9833 6.921 -0.720 0.480 -19.469 9.502
expression:C(dose)[T.1] -13.2827 10.815 -1.228 0.234 -35.920 9.354
Omnibus: 0.724 Durbin-Watson: 1.760
Prob(Omnibus): 0.696 Jarque-Bera (JB): 0.663
Skew: 0.365 Prob(JB): 0.718
Kurtosis: 2.601 Cond. No. 172.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.704
Model: OLS Adj. R-squared: 0.675
Method: Least Squares F-statistic: 23.83
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.09e-06
Time: 04:42:52 Log-Likelihood: -99.089
No. Observations: 23 AIC: 204.2
Df Residuals: 20 BIC: 207.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 129.1087 39.101 3.302 0.004 47.545 210.673
C(dose)[T.1] 49.6805 8.267 6.009 0.000 32.435 66.926
expression -10.4224 5.386 -1.935 0.067 -21.656 0.812
Omnibus: 0.134 Durbin-Watson: 1.984
Prob(Omnibus): 0.935 Jarque-Bera (JB): 0.253
Skew: 0.155 Prob(JB): 0.881
Kurtosis: 2.591 Cond. No. 70.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:42:52 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.171
Model: OLS Adj. R-squared: 0.131
Method: Least Squares F-statistic: 4.323
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0500
Time: 04:42:52 Log-Likelihood: -110.95
No. Observations: 23 AIC: 225.9
Df Residuals: 21 BIC: 228.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 204.7819 60.510 3.384 0.003 78.945 330.619
expression -17.8188 8.570 -2.079 0.050 -35.642 0.004
Omnibus: 1.320 Durbin-Watson: 2.488
Prob(Omnibus): 0.517 Jarque-Bera (JB): 0.881
Skew: 0.028 Prob(JB): 0.644
Kurtosis: 2.043 Cond. No. 66.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.272 0.281 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.679
Model: OLS Adj. R-squared: 0.591
Method: Least Squares F-statistic: 7.752
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00466
Time: 04:42:52 Log-Likelihood: -66.781
No. Observations: 15 AIC: 141.6
Df Residuals: 11 BIC: 144.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 138.2517 105.038 1.316 0.215 -92.935 369.438
C(dose)[T.1] -308.6598 149.009 -2.071 0.063 -636.627 19.307
expression -10.0989 14.921 -0.677 0.512 -42.939 22.741
expression:C(dose)[T.1] 54.3374 22.051 2.464 0.031 5.804 102.870
Omnibus: 1.245 Durbin-Watson: 1.433
Prob(Omnibus): 0.537 Jarque-Bera (JB): 0.969
Skew: -0.561 Prob(JB): 0.616
Kurtosis: 2.461 Cond. No. 214.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.502
Model: OLS Adj. R-squared: 0.419
Method: Least Squares F-statistic: 6.039
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0153
Time: 04:42:52 Log-Likelihood: -70.077
No. Observations: 15 AIC: 146.2
Df Residuals: 12 BIC: 148.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -36.2213 92.544 -0.391 0.702 -237.858 165.416
C(dose)[T.1] 56.9509 16.470 3.458 0.005 21.066 92.836
expression 14.7797 13.104 1.128 0.281 -13.771 43.331
Omnibus: 2.518 Durbin-Watson: 0.940
Prob(Omnibus): 0.284 Jarque-Bera (JB): 1.650
Skew: -0.798 Prob(JB): 0.438
Kurtosis: 2.699 Cond. No. 86.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:42:52 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.072
Method: Least Squares F-statistic: 0.06543
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.802
Time: 04:42:52 Log-Likelihood: -75.262
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 121.5073 109.310 1.112 0.286 -114.642 357.657
expression -4.1349 16.165 -0.256 0.802 -39.056 30.787
Omnibus: 0.772 Durbin-Watson: 1.515
Prob(Omnibus): 0.680 Jarque-Bera (JB): 0.652
Skew: 0.114 Prob(JB): 0.722
Kurtosis: 2.005 Cond. No. 74.5