AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.194 0.034 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.755
Model: OLS Adj. R-squared: 0.717
Method: Least Squares F-statistic: 19.54
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.98e-06
Time: 04:32:06 Log-Likelihood: -96.922
No. Observations: 23 AIC: 201.8
Df Residuals: 19 BIC: 206.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 6.9440 57.031 0.122 0.904 -112.423 126.311
C(dose)[T.1] -90.2664 90.064 -1.002 0.329 -278.772 98.240
expression 7.4005 8.893 0.832 0.416 -11.212 26.013
expression:C(dose)[T.1] 22.9779 14.192 1.619 0.122 -6.727 52.683
Omnibus: 0.526 Durbin-Watson: 1.875
Prob(Omnibus): 0.769 Jarque-Bera (JB): 0.599
Skew: -0.097 Prob(JB): 0.741
Kurtosis: 2.234 Cond. No. 193.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.721
Model: OLS Adj. R-squared: 0.694
Method: Least Squares F-statistic: 25.89
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.82e-06
Time: 04:32:06 Log-Likelihood: -98.408
No. Observations: 23 AIC: 202.8
Df Residuals: 20 BIC: 206.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -50.6717 46.338 -1.094 0.287 -147.330 45.987
C(dose)[T.1] 55.0388 7.849 7.012 0.000 38.665 71.412
expression 16.4218 7.206 2.279 0.034 1.391 31.453
Omnibus: 5.489 Durbin-Watson: 1.770
Prob(Omnibus): 0.064 Jarque-Bera (JB): 1.714
Skew: -0.116 Prob(JB): 0.424
Kurtosis: 1.683 Cond. No. 77.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:32:06 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.037
Model: OLS Adj. R-squared: -0.009
Method: Least Squares F-statistic: 0.7961
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.382
Time: 04:32:06 Log-Likelihood: -112.68
No. Observations: 23 AIC: 229.4
Df Residuals: 21 BIC: 231.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 6.1097 82.801 0.074 0.942 -166.084 178.304
expression 11.6154 13.018 0.892 0.382 -15.458 38.688
Omnibus: 2.907 Durbin-Watson: 2.510
Prob(Omnibus): 0.234 Jarque-Bera (JB): 1.318
Skew: 0.145 Prob(JB): 0.517
Kurtosis: 1.863 Cond. No. 76.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.850 0.048 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.609
Model: OLS Adj. R-squared: 0.502
Method: Least Squares F-statistic: 5.705
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0132
Time: 04:32:06 Log-Likelihood: -68.262
No. Observations: 15 AIC: 144.5
Df Residuals: 11 BIC: 147.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 286.4559 132.010 2.170 0.053 -4.096 577.007
C(dose)[T.1] 2.2184 186.129 0.012 0.991 -407.449 411.886
expression -28.3062 17.010 -1.664 0.124 -65.745 9.133
expression:C(dose)[T.1] 4.7499 24.707 0.192 0.851 -49.630 59.129
Omnibus: 3.919 Durbin-Watson: 0.877
Prob(Omnibus): 0.141 Jarque-Bera (JB): 2.062
Skew: -0.899 Prob(JB): 0.357
Kurtosis: 3.255 Cond. No. 271.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.607
Model: OLS Adj. R-squared: 0.542
Method: Least Squares F-statistic: 9.284
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00366
Time: 04:32:06 Log-Likelihood: -68.287
No. Observations: 15 AIC: 142.6
Df Residuals: 12 BIC: 144.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 269.0344 92.061 2.922 0.013 68.451 469.618
C(dose)[T.1] 37.8876 14.241 2.660 0.021 6.859 68.916
expression -26.0547 11.831 -2.202 0.048 -51.833 -0.276
Omnibus: 3.837 Durbin-Watson: 0.860
Prob(Omnibus): 0.147 Jarque-Bera (JB): 2.013
Skew: -0.889 Prob(JB): 0.365
Kurtosis: 3.244 Cond. No. 107.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:32:06 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.376
Model: OLS Adj. R-squared: 0.328
Method: Least Squares F-statistic: 7.829
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0151
Time: 04:32:06 Log-Likelihood: -71.765
No. Observations: 15 AIC: 147.5
Df Residuals: 13 BIC: 148.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 374.4419 100.668 3.720 0.003 156.961 591.923
expression -37.4052 13.368 -2.798 0.015 -66.286 -8.524
Omnibus: 2.193 Durbin-Watson: 1.929
Prob(Omnibus): 0.334 Jarque-Bera (JB): 1.213
Skew: 0.372 Prob(JB): 0.545
Kurtosis: 1.823 Cond. No. 96.1