AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.023 | 0.880 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.609 |
Method: | Least Squares | F-statistic: | 12.42 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.98e-05 |
Time: | 03:47:14 | Log-Likelihood: | -100.62 |
No. Observations: | 23 | AIC: | 209.2 |
Df Residuals: | 19 | BIC: | 213.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 168.7328 | 159.575 | 1.057 | 0.304 | -165.262 502.728 |
C(dose)[T.1] | -131.3281 | 216.069 | -0.608 | 0.551 | -583.565 320.909 |
expression | -14.9052 | 20.753 | -0.718 | 0.481 | -58.342 28.532 |
expression:C(dose)[T.1] | 24.5560 | 28.839 | 0.851 | 0.405 | -35.805 84.917 |
Omnibus: | 0.078 | Durbin-Watson: | 1.699 |
Prob(Omnibus): | 0.962 | Jarque-Bera (JB): | 0.144 |
Skew: | -0.106 | Prob(JB): | 0.931 |
Kurtosis: | 2.677 | Cond. No. | 489. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.53 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.80e-05 |
Time: | 03:47:14 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 71.0244 | 110.125 | 0.645 | 0.526 | -158.693 300.741 |
C(dose)[T.1] | 52.4273 | 10.593 | 4.949 | 0.000 | 30.331 74.524 |
expression | -2.1886 | 14.311 | -0.153 | 0.880 | -32.041 27.663 |
Omnibus: | 0.438 | Durbin-Watson: | 1.862 |
Prob(Omnibus): | 0.803 | Jarque-Bera (JB): | 0.552 |
Skew: | 0.083 | Prob(JB): | 0.759 |
Kurtosis: | 2.259 | Cond. No. | 192. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:47:15 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.220 |
Model: | OLS | Adj. R-squared: | 0.183 |
Method: | Least Squares | F-statistic: | 5.928 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0239 |
Time: | 03:47:15 | Log-Likelihood: | -110.25 |
No. Observations: | 23 | AIC: | 224.5 |
Df Residuals: | 21 | BIC: | 226.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 393.8195 | 129.163 | 3.049 | 0.006 | 125.211 662.428 |
expression | -41.9657 | 17.236 | -2.435 | 0.024 | -77.810 -6.122 |
Omnibus: | 2.020 | Durbin-Watson: | 2.289 |
Prob(Omnibus): | 0.364 | Jarque-Bera (JB): | 1.694 |
Skew: | 0.624 | Prob(JB): | 0.429 |
Kurtosis: | 2.540 | Cond. No. | 155. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.008 | 0.931 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.560 |
Method: | Least Squares | F-statistic: | 6.936 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00690 |
Time: | 03:47:15 | Log-Likelihood: | -67.336 |
No. Observations: | 15 | AIC: | 142.7 |
Df Residuals: | 11 | BIC: | 145.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -426.0752 | 313.303 | -1.360 | 0.201 | -1115.651 263.500 |
C(dose)[T.1] | 1282.7236 | 483.180 | 2.655 | 0.022 | 219.252 2346.195 |
expression | 55.0210 | 34.914 | 1.576 | 0.143 | -21.825 131.867 |
expression:C(dose)[T.1] | -137.3610 | 53.788 | -2.554 | 0.027 | -255.747 -18.975 |
Omnibus: | 0.496 | Durbin-Watson: | 0.922 |
Prob(Omnibus): | 0.780 | Jarque-Bera (JB): | 0.570 |
Skew: | 0.219 | Prob(JB): | 0.752 |
Kurtosis: | 2.151 | Cond. No. | 868. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.892 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0279 |
Time: | 03:47:15 | Log-Likelihood: | -70.828 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 93.0396 | 288.083 | 0.323 | 0.752 | -534.639 720.718 |
C(dose)[T.1] | 49.2479 | 15.745 | 3.128 | 0.009 | 14.942 83.554 |
expression | -2.8554 | 32.093 | -0.089 | 0.931 | -72.780 67.069 |
Omnibus: | 2.677 | Durbin-Watson: | 0.806 |
Prob(Omnibus): | 0.262 | Jarque-Bera (JB): | 1.879 |
Skew: | -0.841 | Prob(JB): | 0.391 |
Kurtosis: | 2.577 | Cond. No. | 334. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:47:15 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.077 |
Method: | Least Squares | F-statistic: | 0.0004053 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.984 |
Time: | 03:47:15 | Log-Likelihood: | -75.300 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 86.1619 | 372.902 | 0.231 | 0.821 | -719.444 891.768 |
expression | 0.8358 | 41.515 | 0.020 | 0.984 | -88.852 90.524 |
Omnibus: | 0.626 | Durbin-Watson: | 1.619 |
Prob(Omnibus): | 0.731 | Jarque-Bera (JB): | 0.590 |
Skew: | 0.055 | Prob(JB): | 0.744 |
Kurtosis: | 2.034 | Cond. No. | 334. |