AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.951 0.038 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.750
Model: OLS Adj. R-squared: 0.710
Method: Least Squares F-statistic: 18.99
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.09e-06
Time: 04:53:13 Log-Likelihood: -97.168
No. Observations: 23 AIC: 202.3
Df Residuals: 19 BIC: 206.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -69.4132 120.154 -0.578 0.570 -320.899 182.073
C(dose)[T.1] -292.3611 218.747 -1.337 0.197 -750.204 165.482
expression 15.4921 15.043 1.030 0.316 -15.994 46.978
expression:C(dose)[T.1] 41.0251 26.654 1.539 0.140 -14.762 96.812
Omnibus: 1.937 Durbin-Watson: 1.403
Prob(Omnibus): 0.380 Jarque-Bera (JB): 1.681
Skew: 0.578 Prob(JB): 0.432
Kurtosis: 2.353 Cond. No. 574.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.719
Model: OLS Adj. R-squared: 0.691
Method: Least Squares F-statistic: 25.55
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.10e-06
Time: 04:53:13 Log-Likelihood: -98.519
No. Observations: 23 AIC: 203.0
Df Residuals: 20 BIC: 206.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -173.6936 102.573 -1.693 0.106 -387.656 40.269
C(dose)[T.1] 44.0731 8.887 4.959 0.000 25.534 62.612
expression 28.5604 12.836 2.225 0.038 1.784 55.336
Omnibus: 1.472 Durbin-Watson: 1.603
Prob(Omnibus): 0.479 Jarque-Bera (JB): 1.034
Skew: 0.225 Prob(JB): 0.596
Kurtosis: 2.064 Cond. No. 217.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:53:13 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.373
Model: OLS Adj. R-squared: 0.343
Method: Least Squares F-statistic: 12.48
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00197
Time: 04:53:13 Log-Likelihood: -107.74
No. Observations: 23 AIC: 219.5
Df Residuals: 21 BIC: 221.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -395.2095 134.551 -2.937 0.008 -675.024 -115.395
expression 58.3823 16.525 3.533 0.002 24.016 92.749
Omnibus: 0.222 Durbin-Watson: 2.503
Prob(Omnibus): 0.895 Jarque-Bera (JB): 0.278
Skew: -0.198 Prob(JB): 0.870
Kurtosis: 2.636 Cond. No. 195.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
6.489 0.026 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.645
Model: OLS Adj. R-squared: 0.548
Method: Least Squares F-statistic: 6.664
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00792
Time: 04:53:13 Log-Likelihood: -67.531
No. Observations: 15 AIC: 143.1
Df Residuals: 11 BIC: 145.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -415.8436 257.861 -1.613 0.135 -983.392 151.705
C(dose)[T.1] 141.1479 355.301 0.397 0.699 -640.864 923.160
expression 51.8898 27.668 1.875 0.088 -9.006 112.786
expression:C(dose)[T.1] -11.1401 37.583 -0.296 0.772 -93.860 71.580
Omnibus: 0.951 Durbin-Watson: 1.295
Prob(Omnibus): 0.622 Jarque-Bera (JB): 0.540
Skew: -0.447 Prob(JB): 0.763
Kurtosis: 2.745 Cond. No. 700.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.642
Model: OLS Adj. R-squared: 0.583
Method: Least Squares F-statistic: 10.77
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00210
Time: 04:53:13 Log-Likelihood: -67.591
No. Observations: 15 AIC: 141.2
Df Residuals: 12 BIC: 143.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -359.6149 167.894 -2.142 0.053 -725.424 6.194
C(dose)[T.1] 35.9172 13.710 2.620 0.022 6.046 65.788
expression 45.8525 18.000 2.547 0.026 6.635 85.070
Omnibus: 1.291 Durbin-Watson: 1.258
Prob(Omnibus): 0.524 Jarque-Bera (JB): 0.556
Skew: -0.471 Prob(JB): 0.757
Kurtosis: 2.950 Cond. No. 255.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:53:13 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.438
Model: OLS Adj. R-squared: 0.394
Method: Least Squares F-statistic: 10.12
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00723
Time: 04:53:13 Log-Likelihood: -70.983
No. Observations: 15 AIC: 146.0
Df Residuals: 13 BIC: 147.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -510.2157 190.019 -2.685 0.019 -920.726 -99.706
expression 63.7822 20.054 3.181 0.007 20.459 107.105
Omnibus: 0.861 Durbin-Watson: 1.661
Prob(Omnibus): 0.650 Jarque-Bera (JB): 0.784
Skew: 0.451 Prob(JB): 0.676
Kurtosis: 2.335 Cond. No. 239.