AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.164 | 0.293 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.677 |
Model: | OLS | Adj. R-squared: | 0.626 |
Method: | Least Squares | F-statistic: | 13.28 |
Date: | Wed, 29 Jan 2025 | Prob (F-statistic): | 6.60e-05 |
Time: | 00:59:22 | Log-Likelihood: | -100.11 |
No. Observations: | 23 | AIC: | 208.2 |
Df Residuals: | 19 | BIC: | 212.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 181.5725 | 232.833 | 0.780 | 0.445 | -305.753 668.898 |
C(dose)[T.1] | 356.1627 | 437.796 | 0.814 | 0.426 | -560.155 1272.480 |
expression | -12.2780 | 22.438 | -0.547 | 0.591 | -59.241 34.685 |
expression:C(dose)[T.1] | -31.2029 | 43.672 | -0.714 | 0.484 | -122.610 60.204 |
Omnibus: | 0.485 | Durbin-Watson: | 2.121 |
Prob(Omnibus): | 0.785 | Jarque-Bera (JB): | 0.239 |
Skew: | 0.241 | Prob(JB): | 0.887 |
Kurtosis: | 2.870 | Cond. No. | 1.22e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.668 |
Model: | OLS | Adj. R-squared: | 0.635 |
Method: | Least Squares | F-statistic: | 20.15 |
Date: | Wed, 29 Jan 2025 | Prob (F-statistic): | 1.61e-05 |
Time: | 00:59:22 | Log-Likelihood: | -100.41 |
No. Observations: | 23 | AIC: | 206.8 |
Df Residuals: | 20 | BIC: | 210.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 267.0133 | 197.317 | 1.353 | 0.191 | -144.582 678.608 |
C(dose)[T.1] | 43.4982 | 12.483 | 3.485 | 0.002 | 17.459 69.538 |
expression | -20.5145 | 19.013 | -1.079 | 0.293 | -60.175 19.146 |
Omnibus: | 0.416 | Durbin-Watson: | 2.049 |
Prob(Omnibus): | 0.812 | Jarque-Bera (JB): | 0.292 |
Skew: | 0.251 | Prob(JB): | 0.864 |
Kurtosis: | 2.769 | Cond. No. | 476. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Wed, 29 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 00:59:22 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.467 |
Model: | OLS | Adj. R-squared: | 0.442 |
Method: | Least Squares | F-statistic: | 18.40 |
Date: | Wed, 29 Jan 2025 | Prob (F-statistic): | 0.000325 |
Time: | 00:59:22 | Log-Likelihood: | -105.87 |
No. Observations: | 23 | AIC: | 215.7 |
Df Residuals: | 21 | BIC: | 218.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 778.7365 | 163.038 | 4.776 | 0.000 | 439.679 1117.794 |
expression | -68.9097 | 16.064 | -4.290 | 0.000 | -102.317 -35.503 |
Omnibus: | 0.115 | Durbin-Watson: | 2.484 |
Prob(Omnibus): | 0.944 | Jarque-Bera (JB): | 0.238 |
Skew: | 0.143 | Prob(JB): | 0.888 |
Kurtosis: | 2.592 | Cond. No. | 317. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.826 | 0.119 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.568 |
Model: | OLS | Adj. R-squared: | 0.451 |
Method: | Least Squares | F-statistic: | 4.831 |
Date: | Wed, 29 Jan 2025 | Prob (F-statistic): | 0.0221 |
Time: | 00:59:22 | Log-Likelihood: | -68.997 |
No. Observations: | 15 | AIC: | 146.0 |
Df Residuals: | 11 | BIC: | 148.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -378.9125 | 500.735 | -0.757 | 0.465 | -1481.023 723.198 |
C(dose)[T.1] | -452.5483 | 805.680 | -0.562 | 0.586 | -2225.837 1320.740 |
expression | 42.0450 | 47.158 | 0.892 | 0.392 | -61.750 145.840 |
expression:C(dose)[T.1] | 45.9383 | 75.193 | 0.611 | 0.554 | -119.560 211.436 |
Omnibus: | 0.218 | Durbin-Watson: | 1.353 |
Prob(Omnibus): | 0.897 | Jarque-Bera (JB): | 0.400 |
Skew: | -0.163 | Prob(JB): | 0.819 |
Kurtosis: | 2.270 | Cond. No. | 1.52e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.554 |
Model: | OLS | Adj. R-squared: | 0.479 |
Method: | Least Squares | F-statistic: | 7.448 |
Date: | Wed, 29 Jan 2025 | Prob (F-statistic): | 0.00789 |
Time: | 00:59:22 | Log-Likelihood: | -69.247 |
No. Observations: | 15 | AIC: | 144.5 |
Df Residuals: | 12 | BIC: | 146.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -570.7317 | 379.749 | -1.503 | 0.159 | -1398.135 256.671 |
C(dose)[T.1] | 39.5813 | 15.272 | 2.592 | 0.024 | 6.307 72.856 |
expression | 60.1142 | 35.759 | 1.681 | 0.119 | -17.798 138.026 |
Omnibus: | 0.591 | Durbin-Watson: | 1.029 |
Prob(Omnibus): | 0.744 | Jarque-Bera (JB): | 0.636 |
Skew: | -0.323 | Prob(JB): | 0.728 |
Kurtosis: | 2.225 | Cond. No. | 581. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Wed, 29 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 00:59:22 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.304 |
Model: | OLS | Adj. R-squared: | 0.251 |
Method: | Least Squares | F-statistic: | 5.681 |
Date: | Wed, 29 Jan 2025 | Prob (F-statistic): | 0.0331 |
Time: | 00:59:22 | Log-Likelihood: | -72.581 |
No. Observations: | 15 | AIC: | 149.2 |
Df Residuals: | 13 | BIC: | 150.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -921.0578 | 425.826 | -2.163 | 0.050 | -1840.999 -1.116 |
expression | 94.8242 | 39.785 | 2.383 | 0.033 | 8.874 180.774 |
Omnibus: | 0.084 | Durbin-Watson: | 2.028 |
Prob(Omnibus): | 0.959 | Jarque-Bera (JB): | 0.173 |
Skew: | 0.132 | Prob(JB): | 0.917 |
Kurtosis: | 2.544 | Cond. No. | 542. |