AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.122 0.093 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.700
Model: OLS Adj. R-squared: 0.652
Method: Least Squares F-statistic: 14.76
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.35e-05
Time: 05:12:22 Log-Likelihood: -99.268
No. Observations: 23 AIC: 206.5
Df Residuals: 19 BIC: 211.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -11.4717 74.063 -0.155 0.879 -166.487 143.544
C(dose)[T.1] 4.0980 104.806 0.039 0.969 -215.263 223.459
expression 9.6845 10.888 0.890 0.385 -13.103 32.472
expression:C(dose)[T.1] 7.0103 15.291 0.458 0.652 -24.995 39.016
Omnibus: 1.259 Durbin-Watson: 1.783
Prob(Omnibus): 0.533 Jarque-Bera (JB): 0.862
Skew: -0.024 Prob(JB): 0.650
Kurtosis: 2.053 Cond. No. 229.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.696
Model: OLS Adj. R-squared: 0.666
Method: Least Squares F-statistic: 22.94
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.64e-06
Time: 05:12:22 Log-Likelihood: -99.395
No. Observations: 23 AIC: 204.8
Df Residuals: 20 BIC: 208.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -35.5739 51.126 -0.696 0.495 -142.221 71.073
C(dose)[T.1] 51.9930 8.192 6.347 0.000 34.905 69.081
expression 13.2383 7.493 1.767 0.093 -2.391 28.867
Omnibus: 1.499 Durbin-Watson: 1.825
Prob(Omnibus): 0.473 Jarque-Bera (JB): 0.932
Skew: 0.004 Prob(JB): 0.627
Kurtosis: 2.014 Cond. No. 88.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:12:22 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.085
Model: OLS Adj. R-squared: 0.041
Method: Least Squares F-statistic: 1.951
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.177
Time: 05:12:22 Log-Likelihood: -112.08
No. Observations: 23 AIC: 228.2
Df Residuals: 21 BIC: 230.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -40.8727 86.612 -0.472 0.642 -220.992 139.247
expression 17.6545 12.640 1.397 0.177 -8.631 43.940
Omnibus: 4.254 Durbin-Watson: 2.675
Prob(Omnibus): 0.119 Jarque-Bera (JB): 1.621
Skew: 0.206 Prob(JB): 0.445
Kurtosis: 1.766 Cond. No. 87.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.156 0.168 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.571
Model: OLS Adj. R-squared: 0.454
Method: Least Squares F-statistic: 4.885
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0214
Time: 05:12:22 Log-Likelihood: -68.949
No. Observations: 15 AIC: 145.9
Df Residuals: 11 BIC: 148.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 330.5787 152.095 2.173 0.052 -4.181 665.338
C(dose)[T.1] -341.6515 381.932 -0.895 0.390 -1182.279 498.976
expression -36.8964 21.274 -1.734 0.111 -83.719 9.927
expression:C(dose)[T.1] 55.8724 56.221 0.994 0.342 -67.868 179.613
Omnibus: 2.381 Durbin-Watson: 1.278
Prob(Omnibus): 0.304 Jarque-Bera (JB): 1.330
Skew: -0.728 Prob(JB): 0.514
Kurtosis: 2.910 Cond. No. 434.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.533
Model: OLS Adj. R-squared: 0.455
Method: Least Squares F-statistic: 6.840
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0104
Time: 05:12:22 Log-Likelihood: -69.594
No. Observations: 15 AIC: 145.2
Df Residuals: 12 BIC: 147.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 273.5216 140.771 1.943 0.076 -33.191 580.235
C(dose)[T.1] 37.5599 16.518 2.274 0.042 1.571 73.549
expression -28.8964 19.682 -1.468 0.168 -71.779 13.986
Omnibus: 5.763 Durbin-Watson: 1.240
Prob(Omnibus): 0.056 Jarque-Bera (JB): 2.865
Skew: -0.962 Prob(JB): 0.239
Kurtosis: 3.938 Cond. No. 138.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:12:22 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.331
Model: OLS Adj. R-squared: 0.280
Method: Least Squares F-statistic: 6.442
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0247
Time: 05:12:22 Log-Likelihood: -72.281
No. Observations: 15 AIC: 148.6
Df Residuals: 13 BIC: 150.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 442.1051 137.530 3.215 0.007 144.990 739.220
expression -50.3715 19.845 -2.538 0.025 -93.245 -7.498
Omnibus: 0.201 Durbin-Watson: 1.833
Prob(Omnibus): 0.904 Jarque-Bera (JB): 0.376
Skew: 0.185 Prob(JB): 0.828
Kurtosis: 2.318 Cond. No. 117.