AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.438 | 0.134 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.688 |
Model: | OLS | Adj. R-squared: | 0.638 |
Method: | Least Squares | F-statistic: | 13.95 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.83e-05 |
Time: | 04:03:57 | Log-Likelihood: | -99.722 |
No. Observations: | 23 | AIC: | 207.4 |
Df Residuals: | 19 | BIC: | 212.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -2.6090 | 44.652 | -0.058 | 0.954 | -96.066 90.848 |
C(dose)[T.1] | 67.4368 | 68.046 | 0.991 | 0.334 | -74.986 209.859 |
expression | 10.5240 | 8.199 | 1.284 | 0.215 | -6.636 27.685 |
expression:C(dose)[T.1] | -2.2134 | 12.868 | -0.172 | 0.865 | -29.147 24.720 |
Omnibus: | 0.114 | Durbin-Watson: | 2.611 |
Prob(Omnibus): | 0.945 | Jarque-Bera (JB): | 0.331 |
Skew: | -0.071 | Prob(JB): | 0.847 |
Kurtosis: | 2.430 | Cond. No. | 110. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.687 |
Model: | OLS | Adj. R-squared: | 0.656 |
Method: | Least Squares | F-statistic: | 21.97 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.97e-06 |
Time: | 04:03:57 | Log-Likelihood: | -99.740 |
No. Observations: | 23 | AIC: | 205.5 |
Df Residuals: | 20 | BIC: | 208.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 2.2419 | 33.767 | 0.066 | 0.948 | -68.196 72.680 |
C(dose)[T.1] | 55.8275 | 8.432 | 6.621 | 0.000 | 38.239 73.416 |
expression | 9.6255 | 6.164 | 1.562 | 0.134 | -3.232 22.483 |
Omnibus: | 0.065 | Durbin-Watson: | 2.600 |
Prob(Omnibus): | 0.968 | Jarque-Bera (JB): | 0.282 |
Skew: | -0.052 | Prob(JB): | 0.868 |
Kurtosis: | 2.468 | Cond. No. | 45.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:03:57 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.002 |
Model: | OLS | Adj. R-squared: | -0.046 |
Method: | Least Squares | F-statistic: | 0.03262 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.858 |
Time: | 04:03:57 | Log-Likelihood: | -113.09 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 69.6626 | 56.134 | 1.241 | 0.228 | -47.075 186.400 |
expression | 1.9061 | 10.553 | 0.181 | 0.858 | -20.041 23.853 |
Omnibus: | 3.515 | Durbin-Watson: | 2.554 |
Prob(Omnibus): | 0.172 | Jarque-Bera (JB): | 1.621 |
Skew: | 0.296 | Prob(JB): | 0.445 |
Kurtosis: | 1.841 | Cond. No. | 42.8 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.624 | 0.445 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.548 |
Model: | OLS | Adj. R-squared: | 0.424 |
Method: | Least Squares | F-statistic: | 4.442 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0282 |
Time: | 04:03:57 | Log-Likelihood: | -69.348 |
No. Observations: | 15 | AIC: | 146.7 |
Df Residuals: | 11 | BIC: | 149.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 38.5235 | 85.228 | 0.452 | 0.660 | -149.062 226.109 |
C(dose)[T.1] | 211.7006 | 123.109 | 1.720 | 0.113 | -59.259 482.661 |
expression | 5.6998 | 16.669 | 0.342 | 0.739 | -30.988 42.387 |
expression:C(dose)[T.1] | -31.4856 | 23.832 | -1.321 | 0.213 | -83.940 20.969 |
Omnibus: | 1.641 | Durbin-Watson: | 0.681 |
Prob(Omnibus): | 0.440 | Jarque-Bera (JB): | 1.221 |
Skew: | -0.502 | Prob(JB): | 0.543 |
Kurtosis: | 2.027 | Cond. No. | 117. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.476 |
Model: | OLS | Adj. R-squared: | 0.389 |
Method: | Least Squares | F-statistic: | 5.451 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0207 |
Time: | 04:03:57 | Log-Likelihood: | -70.453 |
No. Observations: | 15 | AIC: | 146.9 |
Df Residuals: | 12 | BIC: | 149.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 116.6313 | 63.265 | 1.844 | 0.090 | -21.211 254.473 |
C(dose)[T.1] | 50.2620 | 15.405 | 3.263 | 0.007 | 16.698 83.826 |
expression | -9.7023 | 12.278 | -0.790 | 0.445 | -36.453 17.049 |
Omnibus: | 2.160 | Durbin-Watson: | 0.832 |
Prob(Omnibus): | 0.340 | Jarque-Bera (JB): | 1.626 |
Skew: | -0.668 | Prob(JB): | 0.444 |
Kurtosis: | 2.096 | Cond. No. | 44.5 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:03:57 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.011 |
Model: | OLS | Adj. R-squared: | -0.065 |
Method: | Least Squares | F-statistic: | 0.1473 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.707 |
Time: | 04:03:57 | Log-Likelihood: | -75.216 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 125.4486 | 83.423 | 1.504 | 0.157 | -54.777 305.674 |
expression | -6.1955 | 16.143 | -0.384 | 0.707 | -41.070 28.679 |
Omnibus: | 0.694 | Durbin-Watson: | 1.608 |
Prob(Omnibus): | 0.707 | Jarque-Bera (JB): | 0.611 |
Skew: | -0.004 | Prob(JB): | 0.737 |
Kurtosis: | 2.011 | Cond. No. | 44.2 |