AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.524 0.478 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.719
Model: OLS Adj. R-squared: 0.675
Method: Least Squares F-statistic: 16.24
Date: Tue, 28 Jan 2025 Prob (F-statistic): 1.78e-05
Time: 17:38:00 Log-Likelihood: -98.490
No. Observations: 23 AIC: 205.0
Df Residuals: 19 BIC: 209.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 74.9392 26.489 2.829 0.011 19.497 130.381
C(dose)[T.1] -28.1746 40.391 -0.698 0.494 -112.714 56.365
expression -5.4956 6.865 -0.800 0.433 -19.865 8.874
expression:C(dose)[T.1] 20.7547 10.179 2.039 0.056 -0.549 42.059
Omnibus: 0.121 Durbin-Watson: 1.363
Prob(Omnibus): 0.941 Jarque-Bera (JB): 0.100
Skew: 0.106 Prob(JB): 0.951
Kurtosis: 2.756 Cond. No. 53.6

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.24
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.19e-05
Time: 17:38:00 Log-Likelihood: -100.77
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 39.3210 21.428 1.835 0.081 -5.376 84.018
C(dose)[T.1] 52.5043 8.733 6.012 0.000 34.287 70.722
expression 3.9466 5.454 0.724 0.478 -7.431 15.324
Omnibus: 0.589 Durbin-Watson: 2.039
Prob(Omnibus): 0.745 Jarque-Bera (JB): 0.617
Skew: 0.012 Prob(JB): 0.735
Kurtosis: 2.198 Cond. No. 20.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 17:38:00 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.040
Model: OLS Adj. R-squared: -0.006
Method: Least Squares F-statistic: 0.8747
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.360
Time: 17:38:00 Log-Likelihood: -112.64
No. Observations: 23 AIC: 229.3
Df Residuals: 21 BIC: 231.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 47.6945 34.961 1.364 0.187 -25.012 120.401
expression 8.2679 8.840 0.935 0.360 -10.116 26.652
Omnibus: 2.419 Durbin-Watson: 2.674
Prob(Omnibus): 0.298 Jarque-Bera (JB): 1.161
Skew: 0.021 Prob(JB): 0.560
Kurtosis: 1.900 Cond. No. 20.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.837 0.378 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.556
Model: OLS Adj. R-squared: 0.435
Method: Least Squares F-statistic: 4.586
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0257
Time: 17:38:00 Log-Likelihood: -69.215
No. Observations: 15 AIC: 146.4
Df Residuals: 11 BIC: 149.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.9807 42.544 1.598 0.138 -25.658 161.620
C(dose)[T.1] -64.6052 82.192 -0.786 0.448 -245.508 116.298
expression -0.1240 9.241 -0.013 0.990 -20.462 20.215
expression:C(dose)[T.1] 20.8951 15.759 1.326 0.212 -13.789 55.580
Omnibus: 1.126 Durbin-Watson: 1.060
Prob(Omnibus): 0.569 Jarque-Bera (JB): 0.950
Skew: -0.524 Prob(JB): 0.622
Kurtosis: 2.352 Cond. No. 74.4

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.485
Model: OLS Adj. R-squared: 0.399
Method: Least Squares F-statistic: 5.644
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0187
Time: 17:38:00 Log-Likelihood: -70.327
No. Observations: 15 AIC: 146.7
Df Residuals: 12 BIC: 148.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 35.9809 36.127 0.996 0.339 -42.733 114.694
C(dose)[T.1] 42.1469 17.058 2.471 0.029 4.981 79.312
expression 7.0608 7.718 0.915 0.378 -9.755 23.877
Omnibus: 2.237 Durbin-Watson: 0.860
Prob(Omnibus): 0.327 Jarque-Bera (JB): 1.235
Skew: -0.382 Prob(JB): 0.539
Kurtosis: 1.821 Cond. No. 25.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 17:38:01 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.223
Model: OLS Adj. R-squared: 0.163
Method: Least Squares F-statistic: 3.721
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0758
Time: 17:38:01 Log-Likelihood: -73.412
No. Observations: 15 AIC: 150.8
Df Residuals: 13 BIC: 152.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 15.5027 41.497 0.374 0.715 -74.146 105.152
expression 15.6757 8.126 1.929 0.076 -1.879 33.231
Omnibus: 1.900 Durbin-Watson: 1.214
Prob(Omnibus): 0.387 Jarque-Bera (JB): 0.928
Skew: -0.053 Prob(JB): 0.629
Kurtosis: 1.786 Cond. No. 24.5