AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.483 | 0.495 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.603 |
Method: | Least Squares | F-statistic: | 12.15 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000114 |
Time: | 05:22:24 | Log-Likelihood: | -100.79 |
No. Observations: | 23 | AIC: | 209.6 |
Df Residuals: | 19 | BIC: | 214.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -61.2721 | 241.404 | -0.254 | 0.802 | -566.536 443.992 |
C(dose)[T.1] | 33.7688 | 370.586 | 0.091 | 0.928 | -741.876 809.413 |
expression | 11.7246 | 24.502 | 0.479 | 0.638 | -39.558 63.007 |
expression:C(dose)[T.1] | 1.2321 | 36.437 | 0.034 | 0.973 | -75.031 77.496 |
Omnibus: | 0.085 | Durbin-Watson: | 2.215 |
Prob(Omnibus): | 0.959 | Jarque-Bera (JB): | 0.308 |
Skew: | 0.037 | Prob(JB): | 0.857 |
Kurtosis: | 2.438 | Cond. No. | 1.08e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 19.18 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.23e-05 |
Time: | 05:22:24 | Log-Likelihood: | -100.79 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -66.7595 | 174.204 | -0.383 | 0.706 | -430.142 296.623 |
C(dose)[T.1] | 46.2917 | 13.339 | 3.471 | 0.002 | 18.468 74.115 |
expression | 12.2817 | 17.676 | 0.695 | 0.495 | -24.590 49.154 |
Omnibus: | 0.092 | Durbin-Watson: | 2.221 |
Prob(Omnibus): | 0.955 | Jarque-Bera (JB): | 0.316 |
Skew: | 0.038 | Prob(JB): | 0.854 |
Kurtosis: | 2.431 | Cond. No. | 413. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:22:24 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.451 |
Model: | OLS | Adj. R-squared: | 0.425 |
Method: | Least Squares | F-statistic: | 17.25 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000451 |
Time: | 05:22:24 | Log-Likelihood: | -106.21 |
No. Observations: | 23 | AIC: | 216.4 |
Df Residuals: | 21 | BIC: | 218.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -516.7442 | 143.716 | -3.596 | 0.002 | -815.618 -217.870 |
expression | 58.9170 | 14.186 | 4.153 | 0.000 | 29.415 88.419 |
Omnibus: | 3.131 | Durbin-Watson: | 2.934 |
Prob(Omnibus): | 0.209 | Jarque-Bera (JB): | 1.364 |
Skew: | 0.147 | Prob(JB): | 0.506 |
Kurtosis: | 1.843 | Cond. No. | 275. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.873 | 0.073 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.610 |
Model: | OLS | Adj. R-squared: | 0.503 |
Method: | Least Squares | F-statistic: | 5.725 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0131 |
Time: | 05:22:24 | Log-Likelihood: | -68.246 |
No. Observations: | 15 | AIC: | 144.5 |
Df Residuals: | 11 | BIC: | 147.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -184.3532 | 382.971 | -0.481 | 0.640 | -1027.268 658.561 |
C(dose)[T.1] | -412.7932 | 520.638 | -0.793 | 0.445 | -1558.709 733.122 |
expression | 23.8514 | 36.266 | 0.658 | 0.524 | -55.971 103.673 |
expression:C(dose)[T.1] | 41.9190 | 48.690 | 0.861 | 0.408 | -65.247 149.085 |
Omnibus: | 2.637 | Durbin-Watson: | 0.650 |
Prob(Omnibus): | 0.268 | Jarque-Bera (JB): | 1.719 |
Skew: | -0.817 | Prob(JB): | 0.423 |
Kurtosis: | 2.715 | Cond. No. | 1.11e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.583 |
Model: | OLS | Adj. R-squared: | 0.514 |
Method: | Least Squares | F-statistic: | 8.398 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00524 |
Time: | 05:22:24 | Log-Likelihood: | -68.735 |
No. Observations: | 15 | AIC: | 143.5 |
Df Residuals: | 12 | BIC: | 145.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -429.8543 | 252.872 | -1.700 | 0.115 | -980.815 121.107 |
C(dose)[T.1] | 35.2430 | 15.413 | 2.287 | 0.041 | 1.662 68.824 |
expression | 47.1079 | 23.936 | 1.968 | 0.073 | -5.044 99.260 |
Omnibus: | 2.218 | Durbin-Watson: | 0.691 |
Prob(Omnibus): | 0.330 | Jarque-Bera (JB): | 1.446 |
Skew: | -0.535 | Prob(JB): | 0.485 |
Kurtosis: | 1.919 | Cond. No. | 401. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:22:24 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.402 |
Model: | OLS | Adj. R-squared: | 0.356 |
Method: | Least Squares | F-statistic: | 8.728 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0112 |
Time: | 05:22:24 | Log-Likelihood: | -71.448 |
No. Observations: | 15 | AIC: | 146.9 |
Df Residuals: | 13 | BIC: | 148.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -680.8111 | 262.262 | -2.596 | 0.022 | -1247.393 -114.230 |
expression | 72.2849 | 24.467 | 2.954 | 0.011 | 19.427 125.142 |
Omnibus: | 1.351 | Durbin-Watson: | 1.270 |
Prob(Omnibus): | 0.509 | Jarque-Bera (JB): | 0.848 |
Skew: | -0.182 | Prob(JB): | 0.654 |
Kurtosis: | 1.893 | Cond. No. | 361. |