AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.156 | 0.697 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.597 |
Method: | Least Squares | F-statistic: | 11.87 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000132 |
Time: | 04:01:29 | Log-Likelihood: | -100.96 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 130.6727 | 311.734 | 0.419 | 0.680 | -521.794 783.139 |
C(dose)[T.1] | 136.7405 | 580.940 | 0.235 | 0.816 | -1079.182 1352.663 |
expression | -6.6596 | 27.145 | -0.245 | 0.809 | -63.475 50.155 |
expression:C(dose)[T.1] | -6.7186 | 49.188 | -0.137 | 0.893 | -109.670 96.233 |
Omnibus: | 0.316 | Durbin-Watson: | 1.866 |
Prob(Omnibus): | 0.854 | Jarque-Bera (JB): | 0.480 |
Skew: | -0.027 | Prob(JB): | 0.787 |
Kurtosis: | 2.294 | Cond. No. | 1.84e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 18.72 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.62e-05 |
Time: | 04:01:29 | Log-Likelihood: | -100.97 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 154.1664 | 253.530 | 0.608 | 0.550 | -374.687 683.020 |
C(dose)[T.1] | 57.4117 | 13.530 | 4.243 | 0.000 | 29.189 85.635 |
expression | -8.7058 | 22.075 | -0.394 | 0.697 | -54.753 37.341 |
Omnibus: | 0.447 | Durbin-Watson: | 1.866 |
Prob(Omnibus): | 0.800 | Jarque-Bera (JB): | 0.551 |
Skew: | -0.029 | Prob(JB): | 0.759 |
Kurtosis: | 2.244 | Cond. No. | 687. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:01:29 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.338 |
Model: | OLS | Adj. R-squared: | 0.307 |
Method: | Least Squares | F-statistic: | 10.73 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00360 |
Time: | 04:01:29 | Log-Likelihood: | -108.36 |
No. Observations: | 23 | AIC: | 220.7 |
Df Residuals: | 21 | BIC: | 223.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -655.6505 | 224.527 | -2.920 | 0.008 | -1122.579 -188.722 |
expression | 62.8217 | 19.175 | 3.276 | 0.004 | 22.946 102.697 |
Omnibus: | 2.138 | Durbin-Watson: | 2.313 |
Prob(Omnibus): | 0.343 | Jarque-Bera (JB): | 1.473 |
Skew: | 0.397 | Prob(JB): | 0.479 |
Kurtosis: | 2.048 | Cond. No. | 451. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.483 | 0.500 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.496 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 3.604 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0494 |
Time: | 04:01:29 | Log-Likelihood: | -70.166 |
No. Observations: | 15 | AIC: | 148.3 |
Df Residuals: | 11 | BIC: | 151.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 282.6358 | 222.391 | 1.271 | 0.230 | -206.845 772.116 |
C(dose)[T.1] | -276.2497 | 441.054 | -0.626 | 0.544 | -1247.003 694.503 |
expression | -21.3671 | 22.051 | -0.969 | 0.353 | -69.901 27.167 |
expression:C(dose)[T.1] | 32.0205 | 42.895 | 0.746 | 0.471 | -62.391 126.432 |
Omnibus: | 2.013 | Durbin-Watson: | 1.157 |
Prob(Omnibus): | 0.366 | Jarque-Bera (JB): | 1.348 |
Skew: | -0.712 | Prob(JB): | 0.510 |
Kurtosis: | 2.642 | Cond. No. | 704. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.470 |
Model: | OLS | Adj. R-squared: | 0.382 |
Method: | Least Squares | F-statistic: | 5.323 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0221 |
Time: | 04:01:29 | Log-Likelihood: | -70.537 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 197.4092 | 187.294 | 1.054 | 0.313 | -210.669 605.488 |
C(dose)[T.1] | 52.7564 | 16.259 | 3.245 | 0.007 | 17.331 88.182 |
expression | -12.9053 | 18.562 | -0.695 | 0.500 | -53.348 27.538 |
Omnibus: | 3.194 | Durbin-Watson: | 0.867 |
Prob(Omnibus): | 0.203 | Jarque-Bera (JB): | 2.120 |
Skew: | -0.910 | Prob(JB): | 0.347 |
Kurtosis: | 2.725 | Cond. No. | 252. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:01:29 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.005 |
Model: | OLS | Adj. R-squared: | -0.071 |
Method: | Least Squares | F-statistic: | 0.06832 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.798 |
Time: | 04:01:29 | Log-Likelihood: | -75.261 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 31.7191 | 237.215 | 0.134 | 0.896 | -480.752 544.190 |
expression | 6.0620 | 23.192 | 0.261 | 0.798 | -44.041 56.165 |
Omnibus: | 0.277 | Durbin-Watson: | 1.544 |
Prob(Omnibus): | 0.870 | Jarque-Bera (JB): | 0.439 |
Skew: | -0.021 | Prob(JB): | 0.803 |
Kurtosis: | 2.163 | Cond. No. | 242. |