AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.895 | 0.104 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.700 |
Model: | OLS | Adj. R-squared: | 0.653 |
Method: | Least Squares | F-statistic: | 14.77 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.33e-05 |
Time: | 04:14:13 | Log-Likelihood: | -99.261 |
No. Observations: | 23 | AIC: | 206.5 |
Df Residuals: | 19 | BIC: | 211.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 147.4519 | 111.913 | 1.318 | 0.203 | -86.784 381.688 |
C(dose)[T.1] | 156.4544 | 166.812 | 0.938 | 0.360 | -192.688 505.597 |
expression | -12.2530 | 14.687 | -0.834 | 0.414 | -42.993 18.487 |
expression:C(dose)[T.1] | -14.2625 | 22.228 | -0.642 | 0.529 | -60.785 32.260 |
Omnibus: | 1.611 | Durbin-Watson: | 1.287 |
Prob(Omnibus): | 0.447 | Jarque-Bera (JB): | 1.053 |
Skew: | 0.199 | Prob(JB): | 0.591 |
Kurtosis: | 2.030 | Cond. No. | 387. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.693 |
Model: | OLS | Adj. R-squared: | 0.663 |
Method: | Least Squares | F-statistic: | 22.62 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.33e-06 |
Time: | 04:14:14 | Log-Likelihood: | -99.508 |
No. Observations: | 23 | AIC: | 205.0 |
Df Residuals: | 20 | BIC: | 208.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 194.8373 | 82.843 | 2.352 | 0.029 | 22.031 367.644 |
C(dose)[T.1] | 49.5605 | 8.492 | 5.836 | 0.000 | 31.847 67.274 |
expression | -18.4798 | 10.861 | -1.702 | 0.104 | -41.135 4.175 |
Omnibus: | 2.105 | Durbin-Watson: | 1.237 |
Prob(Omnibus): | 0.349 | Jarque-Bera (JB): | 1.139 |
Skew: | 0.143 | Prob(JB): | 0.566 |
Kurtosis: | 1.948 | Cond. No. | 155. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:14:14 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.171 |
Model: | OLS | Adj. R-squared: | 0.132 |
Method: | Least Squares | F-statistic: | 4.342 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0496 |
Time: | 04:14:14 | Log-Likelihood: | -110.94 |
No. Observations: | 23 | AIC: | 225.9 |
Df Residuals: | 21 | BIC: | 228.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 342.9971 | 126.525 | 2.711 | 0.013 | 79.873 606.121 |
expression | -35.0472 | 16.820 | -2.084 | 0.050 | -70.026 -0.068 |
Omnibus: | 1.897 | Durbin-Watson: | 1.942 |
Prob(Omnibus): | 0.387 | Jarque-Bera (JB): | 1.100 |
Skew: | 0.160 | Prob(JB): | 0.577 |
Kurtosis: | 1.978 | Cond. No. | 147. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.320 | 0.582 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.559 |
Model: | OLS | Adj. R-squared: | 0.439 |
Method: | Least Squares | F-statistic: | 4.646 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0248 |
Time: | 04:14:14 | Log-Likelihood: | -69.162 |
No. Observations: | 15 | AIC: | 146.3 |
Df Residuals: | 11 | BIC: | 149.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 170.1557 | 170.096 | 1.000 | 0.339 | -204.224 544.535 |
C(dose)[T.1] | -333.0993 | 248.746 | -1.339 | 0.208 | -880.586 214.388 |
expression | -13.8947 | 22.961 | -0.605 | 0.557 | -64.432 36.642 |
expression:C(dose)[T.1] | 52.4682 | 33.947 | 1.546 | 0.150 | -22.249 127.185 |
Omnibus: | 1.420 | Durbin-Watson: | 1.017 |
Prob(Omnibus): | 0.492 | Jarque-Bera (JB): | 0.858 |
Skew: | -0.570 | Prob(JB): | 0.651 |
Kurtosis: | 2.733 | Cond. No. | 330. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.463 |
Model: | OLS | Adj. R-squared: | 0.374 |
Method: | Least Squares | F-statistic: | 5.175 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0240 |
Time: | 04:14:14 | Log-Likelihood: | -70.635 |
No. Observations: | 15 | AIC: | 147.3 |
Df Residuals: | 12 | BIC: | 149.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -7.3078 | 132.559 | -0.055 | 0.957 | -296.130 281.514 |
C(dose)[T.1] | 50.6681 | 15.750 | 3.217 | 0.007 | 16.352 84.984 |
expression | 10.1087 | 17.864 | 0.566 | 0.582 | -28.814 49.031 |
Omnibus: | 2.613 | Durbin-Watson: | 0.784 |
Prob(Omnibus): | 0.271 | Jarque-Bera (JB): | 1.770 |
Skew: | -0.823 | Prob(JB): | 0.413 |
Kurtosis: | 2.646 | Cond. No. | 128. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:14:14 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.077 |
Method: | Least Squares | F-statistic: | 0.0007186 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.979 |
Time: | 04:14:14 | Log-Likelihood: | -75.300 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 89.1362 | 169.305 | 0.526 | 0.607 | -276.625 454.898 |
expression | 0.6193 | 23.101 | 0.027 | 0.979 | -49.288 50.527 |
Omnibus: | 0.549 | Durbin-Watson: | 1.619 |
Prob(Omnibus): | 0.760 | Jarque-Bera (JB): | 0.560 |
Skew: | 0.038 | Prob(JB): | 0.756 |
Kurtosis: | 2.056 | Cond. No. | 124. |