AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.477 0.498 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.604
Method: Least Squares F-statistic: 12.20
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000112
Time: 22:59:13 Log-Likelihood: -100.76
No. Observations: 23 AIC: 209.5
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -2.9962 86.094 -0.035 0.973 -183.193 177.201
C(dose)[T.1] 85.6870 129.899 0.660 0.517 -186.194 357.568
expression 7.4312 11.156 0.666 0.513 -15.918 30.780
expression:C(dose)[T.1] -4.0566 17.266 -0.235 0.817 -40.194 32.081
Omnibus: 0.309 Durbin-Watson: 1.834
Prob(Omnibus): 0.857 Jarque-Bera (JB): 0.477
Skew: -0.048 Prob(JB): 0.788
Kurtosis: 2.301 Cond. No. 282.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 19.17
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.24e-05
Time: 22:59:13 Log-Likelihood: -100.79
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 10.0401 64.257 0.156 0.877 -123.997 144.077
C(dose)[T.1] 55.2458 9.097 6.073 0.000 36.269 74.223
expression 5.7377 8.311 0.690 0.498 -11.598 23.074
Omnibus: 0.114 Durbin-Watson: 1.813
Prob(Omnibus): 0.945 Jarque-Bera (JB): 0.337
Skew: -0.028 Prob(JB): 0.845
Kurtosis: 2.409 Cond. No. 114.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:59:13 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.025
Model: OLS Adj. R-squared: -0.021
Method: Least Squares F-statistic: 0.5427
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.469
Time: 22:59:14 Log-Likelihood: -112.81
No. Observations: 23 AIC: 229.6
Df Residuals: 21 BIC: 231.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 152.0862 98.494 1.544 0.137 -52.743 356.915
expression -9.5995 13.031 -0.737 0.469 -36.698 17.499
Omnibus: 2.730 Durbin-Watson: 2.403
Prob(Omnibus): 0.255 Jarque-Bera (JB): 1.387
Skew: 0.246 Prob(JB): 0.500
Kurtosis: 1.902 Cond. No. 106.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.665 0.035 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.689
Model: OLS Adj. R-squared: 0.604
Method: Least Squares F-statistic: 8.110
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00395
Time: 22:59:14 Log-Likelihood: -66.549
No. Observations: 15 AIC: 141.1
Df Residuals: 11 BIC: 143.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -250.2534 241.023 -1.038 0.321 -780.742 280.235
C(dose)[T.1] -625.7569 452.163 -1.384 0.194 -1620.961 369.447
expression 37.1122 28.137 1.319 0.214 -24.817 99.041
expression:C(dose)[T.1] 78.8549 52.805 1.493 0.163 -37.367 195.077
Omnibus: 1.124 Durbin-Watson: 1.158
Prob(Omnibus): 0.570 Jarque-Bera (JB): 0.917
Skew: -0.531 Prob(JB): 0.632
Kurtosis: 2.416 Cond. No. 775.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.626
Model: OLS Adj. R-squared: 0.563
Method: Least Squares F-statistic: 10.02
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00276
Time: 22:59:14 Log-Likelihood: -67.933
No. Observations: 15 AIC: 141.9
Df Residuals: 12 BIC: 144.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -441.9072 214.213 -2.063 0.061 -908.638 24.824
C(dose)[T.1] 49.2208 12.973 3.794 0.003 20.955 77.486
expression 59.5016 25.000 2.380 0.035 5.031 113.973
Omnibus: 1.191 Durbin-Watson: 1.309
Prob(Omnibus): 0.551 Jarque-Bera (JB): 0.751
Skew: -0.525 Prob(JB): 0.687
Kurtosis: 2.687 Cond. No. 288.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:59:14 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.176
Model: OLS Adj. R-squared: 0.113
Method: Least Squares F-statistic: 2.783
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.119
Time: 22:59:14 Log-Likelihood: -73.845
No. Observations: 15 AIC: 151.7
Df Residuals: 13 BIC: 153.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -415.0143 305.072 -1.360 0.197 -1074.083 244.054
expression 59.4266 35.624 1.668 0.119 -17.534 136.387
Omnibus: 6.222 Durbin-Watson: 1.793
Prob(Omnibus): 0.045 Jarque-Bera (JB): 1.534
Skew: 0.086 Prob(JB): 0.464
Kurtosis: 1.443 Cond. No. 287.