AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.831 | 0.191 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.686 |
Model: | OLS | Adj. R-squared: | 0.637 |
Method: | Least Squares | F-statistic: | 13.86 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.03e-05 |
Time: | 05:20:18 | Log-Likelihood: | -99.772 |
No. Observations: | 23 | AIC: | 207.5 |
Df Residuals: | 19 | BIC: | 212.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -120.1655 | 241.624 | -0.497 | 0.625 | -625.890 385.560 |
C(dose)[T.1] | -262.5110 | 443.641 | -0.592 | 0.561 | -1191.063 666.041 |
expression | 16.0665 | 22.256 | 0.722 | 0.479 | -30.516 62.649 |
expression:C(dose)[T.1] | 27.4318 | 39.812 | 0.689 | 0.499 | -55.896 110.759 |
Omnibus: | 0.048 | Durbin-Watson: | 1.674 |
Prob(Omnibus): | 0.976 | Jarque-Bera (JB): | 0.133 |
Skew: | 0.081 | Prob(JB): | 0.935 |
Kurtosis: | 2.664 | Cond. No. | 1.40e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.678 |
Model: | OLS | Adj. R-squared: | 0.646 |
Method: | Least Squares | F-statistic: | 21.10 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.18e-05 |
Time: | 05:20:18 | Log-Likelihood: | -100.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 20 | BIC: | 209.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -213.2098 | 197.720 | -1.078 | 0.294 | -625.646 199.227 |
C(dose)[T.1] | 43.0707 | 11.315 | 3.807 | 0.001 | 19.468 66.673 |
expression | 24.6395 | 18.210 | 1.353 | 0.191 | -13.345 62.624 |
Omnibus: | 0.042 | Durbin-Watson: | 1.585 |
Prob(Omnibus): | 0.979 | Jarque-Bera (JB): | 0.167 |
Skew: | 0.086 | Prob(JB): | 0.920 |
Kurtosis: | 2.619 | Cond. No. | 527. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:20:18 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.446 |
Model: | OLS | Adj. R-squared: | 0.419 |
Method: | Least Squares | F-statistic: | 16.88 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000502 |
Time: | 05:20:18 | Log-Likelihood: | -106.32 |
No. Observations: | 23 | AIC: | 216.6 |
Df Residuals: | 21 | BIC: | 218.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -706.3373 | 191.421 | -3.690 | 0.001 | -1104.419 -308.256 |
expression | 71.1201 | 17.312 | 4.108 | 0.001 | 35.117 107.123 |
Omnibus: | 3.841 | Durbin-Watson: | 1.753 |
Prob(Omnibus): | 0.147 | Jarque-Bera (JB): | 1.660 |
Skew: | 0.282 | Prob(JB): | 0.436 |
Kurtosis: | 1.811 | Cond. No. | 397. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.522 | 0.484 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.489 |
Model: | OLS | Adj. R-squared: | 0.350 |
Method: | Least Squares | F-statistic: | 3.512 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0528 |
Time: | 05:20:18 | Log-Likelihood: | -70.261 |
No. Observations: | 15 | AIC: | 148.5 |
Df Residuals: | 11 | BIC: | 151.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 460.5276 | 423.740 | 1.087 | 0.300 | -472.119 1393.174 |
C(dose)[T.1] | -404.6969 | 744.537 | -0.544 | 0.598 | -2043.412 1234.018 |
expression | -34.8592 | 37.562 | -0.928 | 0.373 | -117.534 47.815 |
expression:C(dose)[T.1] | 40.1945 | 65.547 | 0.613 | 0.552 | -104.074 184.463 |
Omnibus: | 2.387 | Durbin-Watson: | 0.704 |
Prob(Omnibus): | 0.303 | Jarque-Bera (JB): | 1.712 |
Skew: | -0.793 | Prob(JB): | 0.425 |
Kurtosis: | 2.525 | Cond. No. | 1.33e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.472 |
Model: | OLS | Adj. R-squared: | 0.384 |
Method: | Least Squares | F-statistic: | 5.359 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0217 |
Time: | 05:20:18 | Log-Likelihood: | -70.514 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 311.6777 | 338.174 | 0.922 | 0.375 | -425.140 1048.495 |
C(dose)[T.1] | 51.7544 | 15.809 | 3.274 | 0.007 | 17.309 86.200 |
expression | -21.6595 | 29.972 | -0.723 | 0.484 | -86.963 43.644 |
Omnibus: | 4.662 | Durbin-Watson: | 0.646 |
Prob(Omnibus): | 0.097 | Jarque-Bera (JB): | 2.713 |
Skew: | -1.037 | Prob(JB): | 0.258 |
Kurtosis: | 3.187 | Cond. No. | 503. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:20:18 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.077 |
Method: | Least Squares | F-statistic: | 6.406e-05 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.994 |
Time: | 05:20:18 | Log-Likelihood: | -75.300 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 90.1620 | 437.996 | 0.206 | 0.840 | -856.071 1036.395 |
expression | 0.3091 | 38.614 | 0.008 | 0.994 | -83.112 83.731 |
Omnibus: | 0.575 | Durbin-Watson: | 1.621 |
Prob(Omnibus): | 0.750 | Jarque-Bera (JB): | 0.570 |
Skew: | 0.044 | Prob(JB): | 0.752 |
Kurtosis: | 2.049 | Cond. No. | 493. |