AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.017 0.898 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.599
Method: Least Squares F-statistic: 11.97
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.000125
Time: 22:28:03 Log-Likelihood: -100.90
No. Observations: 23 AIC: 209.8
Df Residuals: 19 BIC: 214.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -41.8752 240.138 -0.174 0.863 -544.490 460.739
C(dose)[T.1] 261.9359 415.149 0.631 0.536 -606.981 1130.852
expression 9.3339 23.320 0.400 0.693 -39.476 58.144
expression:C(dose)[T.1] -19.9497 39.552 -0.504 0.620 -102.733 62.833
Omnibus: 0.484 Durbin-Watson: 1.915
Prob(Omnibus): 0.785 Jarque-Bera (JB): 0.581
Skew: 0.114 Prob(JB): 0.748
Kurtosis: 2.255 Cond. No. 1.19e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.52
Date: Mon, 27 Jan 2025 Prob (F-statistic): 2.81e-05
Time: 22:28:03 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 29.5172 190.340 0.155 0.878 -367.526 426.560
C(dose)[T.1] 52.6059 10.420 5.048 0.000 30.869 74.342
expression 2.3986 18.481 0.130 0.898 -36.152 40.949
Omnibus: 0.334 Durbin-Watson: 1.916
Prob(Omnibus): 0.846 Jarque-Bera (JB): 0.493
Skew: 0.063 Prob(JB): 0.782
Kurtosis: 2.294 Cond. No. 459.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 22:28:03 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.203
Model: OLS Adj. R-squared: 0.165
Method: Least Squares F-statistic: 5.333
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0312
Time: 22:28:03 Log-Likelihood: -110.50
No. Observations: 23 AIC: 225.0
Df Residuals: 21 BIC: 227.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -471.9225 238.964 -1.975 0.062 -968.876 25.031
expression 52.8401 22.881 2.309 0.031 5.256 100.425
Omnibus: 3.201 Durbin-Watson: 2.564
Prob(Omnibus): 0.202 Jarque-Bera (JB): 1.560
Skew: 0.296 Prob(JB): 0.458
Kurtosis: 1.870 Cond. No. 391.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.340 0.571 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.464
Model: OLS Adj. R-squared: 0.318
Method: Least Squares F-statistic: 3.174
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0675
Time: 22:28:03 Log-Likelihood: -70.623
No. Observations: 15 AIC: 149.2
Df Residuals: 11 BIC: 152.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -40.7538 475.280 -0.086 0.933 -1086.838 1005.331
C(dose)[T.1] 45.8513 523.311 0.088 0.932 -1105.948 1197.650
expression 10.2854 45.173 0.228 0.824 -89.140 109.710
expression:C(dose)[T.1] 0.3652 49.768 0.007 0.994 -109.174 109.904
Omnibus: 1.330 Durbin-Watson: 0.873
Prob(Omnibus): 0.514 Jarque-Bera (JB): 0.900
Skew: -0.570 Prob(JB): 0.638
Kurtosis: 2.624 Cond. No. 1.05e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.464
Model: OLS Adj. R-squared: 0.375
Method: Least Squares F-statistic: 5.193
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0237
Time: 22:28:03 Log-Likelihood: -70.623
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -43.9182 191.258 -0.230 0.822 -460.634 372.798
C(dose)[T.1] 49.6893 15.544 3.197 0.008 15.821 83.557
expression 10.5862 18.152 0.583 0.571 -28.963 50.136
Omnibus: 1.333 Durbin-Watson: 0.870
Prob(Omnibus): 0.513 Jarque-Bera (JB): 0.904
Skew: -0.571 Prob(JB): 0.636
Kurtosis: 2.622 Cond. No. 262.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 22:28:03 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.008
Model: OLS Adj. R-squared: -0.069
Method: Least Squares F-statistic: 0.09837
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.759
Time: 22:28:03 Log-Likelihood: -75.244
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 15.6845 248.847 0.063 0.951 -521.917 553.286
expression 7.4316 23.695 0.314 0.759 -43.759 58.622
Omnibus: 0.295 Durbin-Watson: 1.627
Prob(Omnibus): 0.863 Jarque-Bera (JB): 0.452
Skew: 0.113 Prob(JB): 0.798
Kurtosis: 2.180 Cond. No. 260.