AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.419 | 0.525 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.666 |
Model: | OLS | Adj. R-squared: | 0.613 |
Method: | Least Squares | F-statistic: | 12.62 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.06e-05 |
Time: | 04:58:56 | Log-Likelihood: | -100.50 |
No. Observations: | 23 | AIC: | 209.0 |
Df Residuals: | 19 | BIC: | 213.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 16.1261 | 232.909 | 0.069 | 0.946 | -471.359 503.611 |
C(dose)[T.1] | 276.9480 | 302.294 | 0.916 | 0.371 | -355.761 909.657 |
expression | 4.1987 | 25.670 | 0.164 | 0.872 | -49.529 57.927 |
expression:C(dose)[T.1] | -24.5482 | 33.245 | -0.738 | 0.469 | -94.131 45.034 |
Omnibus: | 0.634 | Durbin-Watson: | 1.911 |
Prob(Omnibus): | 0.728 | Jarque-Bera (JB): | 0.664 |
Skew: | 0.144 | Prob(JB): | 0.717 |
Kurtosis: | 2.219 | Cond. No. | 859. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 19.09 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.30e-05 |
Time: | 04:58:56 | Log-Likelihood: | -100.82 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 148.8759 | 146.381 | 1.017 | 0.321 | -156.470 454.221 |
C(dose)[T.1] | 53.8278 | 8.712 | 6.178 | 0.000 | 35.654 72.002 |
expression | -10.4373 | 16.125 | -0.647 | 0.525 | -44.074 23.199 |
Omnibus: | 0.669 | Durbin-Watson: | 1.938 |
Prob(Omnibus): | 0.716 | Jarque-Bera (JB): | 0.662 |
Skew: | 0.089 | Prob(JB): | 0.718 |
Kurtosis: | 2.188 | Cond. No. | 311. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:58:57 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.004374 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.948 |
Time: | 04:58:57 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 95.7945 | 243.208 | 0.394 | 0.698 | -409.985 601.574 |
expression | -1.7682 | 26.736 | -0.066 | 0.948 | -57.369 53.833 |
Omnibus: | 3.318 | Durbin-Watson: | 2.480 |
Prob(Omnibus): | 0.190 | Jarque-Bera (JB): | 1.563 |
Skew: | 0.283 | Prob(JB): | 0.458 |
Kurtosis: | 1.855 | Cond. No. | 310. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.021 | 0.887 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.505 |
Model: | OLS | Adj. R-squared: | 0.369 |
Method: | Least Squares | F-statistic: | 3.734 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0451 |
Time: | 04:58:57 | Log-Likelihood: | -70.033 |
No. Observations: | 15 | AIC: | 148.1 |
Df Residuals: | 11 | BIC: | 150.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 111.9541 | 205.410 | 0.545 | 0.597 | -340.150 564.058 |
C(dose)[T.1] | -638.3933 | 624.198 | -1.023 | 0.328 | -2012.243 735.457 |
expression | -5.0666 | 23.338 | -0.217 | 0.832 | -56.433 46.300 |
expression:C(dose)[T.1] | 79.9246 | 72.464 | 1.103 | 0.294 | -79.569 239.418 |
Omnibus: | 1.689 | Durbin-Watson: | 1.134 |
Prob(Omnibus): | 0.430 | Jarque-Bera (JB): | 0.586 |
Skew: | -0.476 | Prob(JB): | 0.746 |
Kurtosis: | 3.180 | Cond. No. | 822. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.904 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0278 |
Time: | 04:58:57 | Log-Likelihood: | -70.820 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 39.1012 | 196.247 | 0.199 | 0.845 | -388.483 466.686 |
C(dose)[T.1] | 49.8332 | 16.331 | 3.051 | 0.010 | 14.251 85.415 |
expression | 3.2234 | 22.293 | 0.145 | 0.887 | -45.349 51.795 |
Omnibus: | 2.721 | Durbin-Watson: | 0.826 |
Prob(Omnibus): | 0.257 | Jarque-Bera (JB): | 1.841 |
Skew: | -0.840 | Prob(JB): | 0.398 |
Kurtosis: | 2.654 | Cond. No. | 221. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:58:57 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.023 |
Model: | OLS | Adj. R-squared: | -0.052 |
Method: | Least Squares | F-statistic: | 0.3026 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.592 |
Time: | 04:58:57 | Log-Likelihood: | -75.127 |
No. Observations: | 15 | AIC: | 154.3 |
Df Residuals: | 13 | BIC: | 155.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 224.9536 | 238.860 | 0.942 | 0.363 | -291.072 740.980 |
expression | -15.1206 | 27.486 | -0.550 | 0.592 | -74.500 44.259 |
Omnibus: | 1.173 | Durbin-Watson: | 1.600 |
Prob(Omnibus): | 0.556 | Jarque-Bera (JB): | 0.759 |
Skew: | 0.058 | Prob(JB): | 0.684 |
Kurtosis: | 1.904 | Cond. No. | 209. |