AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.390 0.539 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.721
Model: OLS Adj. R-squared: 0.677
Method: Least Squares F-statistic: 16.35
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.70e-05
Time: 22:48:41 Log-Likelihood: -98.434
No. Observations: 23 AIC: 204.9
Df Residuals: 19 BIC: 209.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -48.8518 92.582 -0.528 0.604 -242.629 144.925
C(dose)[T.1] 307.7588 122.094 2.521 0.021 52.214 563.304
expression 26.1814 23.477 1.115 0.279 -22.957 75.320
expression:C(dose)[T.1] -66.2999 31.526 -2.103 0.049 -132.285 -0.315
Omnibus: 0.616 Durbin-Watson: 1.800
Prob(Omnibus): 0.735 Jarque-Bera (JB): 0.686
Skew: -0.307 Prob(JB): 0.710
Kurtosis: 2.417 Cond. No. 167.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.05
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.34e-05
Time: 22:48:41 Log-Likelihood: -100.84
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 95.8813 67.018 1.431 0.168 -43.915 235.678
C(dose)[T.1] 51.6060 9.117 5.660 0.000 32.587 70.625
expression -10.5866 16.957 -0.624 0.539 -45.958 24.784
Omnibus: 0.405 Durbin-Watson: 1.951
Prob(Omnibus): 0.817 Jarque-Bera (JB): 0.547
Skew: 0.180 Prob(JB): 0.761
Kurtosis: 2.336 Cond. No. 64.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:48:41 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.104
Model: OLS Adj. R-squared: 0.062
Method: Least Squares F-statistic: 2.447
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.133
Time: 22:48:41 Log-Likelihood: -111.84
No. Observations: 23 AIC: 227.7
Df Residuals: 21 BIC: 229.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 233.1775 98.343 2.371 0.027 28.661 437.694
expression -39.7753 25.428 -1.564 0.133 -92.656 13.105
Omnibus: 4.103 Durbin-Watson: 2.733
Prob(Omnibus): 0.129 Jarque-Bera (JB): 1.473
Skew: -0.009 Prob(JB): 0.479
Kurtosis: 1.760 Cond. No. 59.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.692 0.051 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.604
Model: OLS Adj. R-squared: 0.496
Method: Least Squares F-statistic: 5.586
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0141
Time: 22:48:41 Log-Likelihood: -68.358
No. Observations: 15 AIC: 144.7
Df Residuals: 11 BIC: 147.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 230.9677 147.889 1.562 0.147 -94.534 556.469
C(dose)[T.1] 35.2971 171.022 0.206 0.840 -341.121 411.715
expression -33.1701 29.925 -1.108 0.291 -99.034 32.694
expression:C(dose)[T.1] -0.5002 35.559 -0.014 0.989 -78.764 77.764
Omnibus: 0.172 Durbin-Watson: 1.085
Prob(Omnibus): 0.918 Jarque-Bera (JB): 0.341
Skew: -0.186 Prob(JB): 0.843
Kurtosis: 2.362 Cond. No. 175.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.604
Model: OLS Adj. R-squared: 0.538
Method: Least Squares F-statistic: 9.141
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00387
Time: 22:48:42 Log-Likelihood: -68.358
No. Observations: 15 AIC: 142.7
Df Residuals: 12 BIC: 144.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 232.7141 76.923 3.025 0.011 65.114 400.314
C(dose)[T.1] 32.9021 15.319 2.148 0.053 -0.476 66.280
expression -33.5243 15.476 -2.166 0.051 -67.244 0.195
Omnibus: 0.182 Durbin-Watson: 1.093
Prob(Omnibus): 0.913 Jarque-Bera (JB): 0.350
Skew: -0.190 Prob(JB): 0.839
Kurtosis: 2.355 Cond. No. 57.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:48:42 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.409
Method: Least Squares F-statistic: 10.70
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00608
Time: 22:48:42 Log-Likelihood: -70.797
No. Observations: 15 AIC: 145.6
Df Residuals: 13 BIC: 147.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 326.5006 71.588 4.561 0.001 171.845 481.156
expression -49.8457 15.241 -3.271 0.006 -82.771 -16.920
Omnibus: 4.552 Durbin-Watson: 1.570
Prob(Omnibus): 0.103 Jarque-Bera (JB): 1.984
Skew: 0.764 Prob(JB): 0.371
Kurtosis: 3.915 Cond. No. 46.7