AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.814 0.193 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.733
Model: OLS Adj. R-squared: 0.691
Method: Least Squares F-statistic: 17.38
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.12e-05
Time: 22:46:36 Log-Likelihood: -97.921
No. Observations: 23 AIC: 203.8
Df Residuals: 19 BIC: 208.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 90.9075 115.722 0.786 0.442 -151.301 333.116
C(dose)[T.1] -281.7716 169.117 -1.666 0.112 -635.737 72.194
expression -5.7840 18.218 -0.317 0.754 -43.916 32.348
expression:C(dose)[T.1] 52.1041 26.412 1.973 0.063 -3.177 107.385
Omnibus: 1.433 Durbin-Watson: 1.716
Prob(Omnibus): 0.488 Jarque-Bera (JB): 1.255
Skew: 0.516 Prob(JB): 0.534
Kurtosis: 2.503 Cond. No. 363.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.678
Model: OLS Adj. R-squared: 0.646
Method: Least Squares F-statistic: 21.08
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.19e-05
Time: 22:46:37 Log-Likelihood: -100.06
No. Observations: 23 AIC: 206.1
Df Residuals: 20 BIC: 209.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -66.3904 89.726 -0.740 0.468 -253.557 120.776
C(dose)[T.1] 51.4851 8.509 6.051 0.000 33.735 69.235
expression 19.0072 14.112 1.347 0.193 -10.430 48.444
Omnibus: 0.768 Durbin-Watson: 1.972
Prob(Omnibus): 0.681 Jarque-Bera (JB): 0.728
Skew: -0.154 Prob(JB): 0.695
Kurtosis: 2.185 Cond. No. 141.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:46:37 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.089
Model: OLS Adj. R-squared: 0.046
Method: Least Squares F-statistic: 2.058
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.166
Time: 22:46:37 Log-Likelihood: -112.03
No. Observations: 23 AIC: 228.1
Df Residuals: 21 BIC: 230.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -129.9550 146.305 -0.888 0.384 -434.213 174.303
expression 32.8049 22.865 1.435 0.166 -14.746 80.356
Omnibus: 0.331 Durbin-Watson: 2.240
Prob(Omnibus): 0.848 Jarque-Bera (JB): 0.496
Skew: -0.144 Prob(JB): 0.780
Kurtosis: 2.340 Cond. No. 139.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.026 0.875 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.588
Model: OLS Adj. R-squared: 0.476
Method: Least Squares F-statistic: 5.241
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0173
Time: 22:46:37 Log-Likelihood: -68.643
No. Observations: 15 AIC: 145.3
Df Residuals: 11 BIC: 148.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -148.5209 188.609 -0.787 0.448 -563.646 266.605
C(dose)[T.1] 576.6194 275.374 2.094 0.060 -29.475 1182.714
expression 33.7820 29.460 1.147 0.276 -31.060 98.624
expression:C(dose)[T.1] -85.1337 44.267 -1.923 0.081 -182.565 12.298
Omnibus: 2.503 Durbin-Watson: 1.283
Prob(Omnibus): 0.286 Jarque-Bera (JB): 1.198
Skew: -0.690 Prob(JB): 0.549
Kurtosis: 3.112 Cond. No. 322.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.908
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0277
Time: 22:46:37 Log-Likelihood: -70.817
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 92.5124 155.990 0.593 0.564 -247.360 432.385
C(dose)[T.1] 47.9135 17.621 2.719 0.019 9.520 86.307
expression -3.9240 24.336 -0.161 0.875 -56.948 49.100
Omnibus: 2.819 Durbin-Watson: 0.777
Prob(Omnibus): 0.244 Jarque-Bera (JB): 1.918
Skew: -0.858 Prob(JB): 0.383
Kurtosis: 2.648 Cond. No. 128.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:46:37 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.111
Model: OLS Adj. R-squared: 0.043
Method: Least Squares F-statistic: 1.624
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.225
Time: 22:46:37 Log-Likelihood: -74.417
No. Observations: 15 AIC: 152.8
Df Residuals: 13 BIC: 154.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 303.8509 165.191 1.839 0.089 -53.022 660.723
expression -33.8022 26.521 -1.275 0.225 -91.098 23.494
Omnibus: 1.506 Durbin-Watson: 1.269
Prob(Omnibus): 0.471 Jarque-Bera (JB): 0.788
Skew: -0.557 Prob(JB): 0.674
Kurtosis: 2.860 Cond. No. 110.