AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.751 | 0.397 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.663 |
Model: | OLS | Adj. R-squared: | 0.609 |
Method: | Least Squares | F-statistic: | 12.44 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.89e-05 |
Time: | 05:00:22 | Log-Likelihood: | -100.61 |
No. Observations: | 23 | AIC: | 209.2 |
Df Residuals: | 19 | BIC: | 213.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 259.4884 | 267.761 | 0.969 | 0.345 | -300.941 819.918 |
C(dose)[T.1] | -39.2497 | 378.082 | -0.104 | 0.918 | -830.585 752.085 |
expression | -22.3152 | 29.100 | -0.767 | 0.453 | -83.222 38.591 |
expression:C(dose)[T.1] | 9.5128 | 42.022 | 0.226 | 0.823 | -78.439 97.465 |
Omnibus: | 0.130 | Durbin-Watson: | 2.087 |
Prob(Omnibus): | 0.937 | Jarque-Bera (JB): | 0.347 |
Skew: | 0.071 | Prob(JB): | 0.841 |
Kurtosis: | 2.415 | Cond. No. | 1.01e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.628 |
Method: | Least Squares | F-statistic: | 19.56 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.96e-05 |
Time: | 05:00:22 | Log-Likelihood: | -100.64 |
No. Observations: | 23 | AIC: | 207.3 |
Df Residuals: | 20 | BIC: | 210.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 217.5233 | 188.577 | 1.154 | 0.262 | -175.840 610.887 |
C(dose)[T.1] | 46.2964 | 11.839 | 3.911 | 0.001 | 21.601 70.992 |
expression | -17.7533 | 20.489 | -0.866 | 0.397 | -60.493 24.986 |
Omnibus: | 0.221 | Durbin-Watson: | 2.061 |
Prob(Omnibus): | 0.895 | Jarque-Bera (JB): | 0.420 |
Skew: | 0.032 | Prob(JB): | 0.810 |
Kurtosis: | 2.341 | Cond. No. | 401. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:00:22 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.403 |
Model: | OLS | Adj. R-squared: | 0.375 |
Method: | Least Squares | F-statistic: | 14.18 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00114 |
Time: | 05:00:22 | Log-Likelihood: | -107.17 |
No. Observations: | 23 | AIC: | 218.3 |
Df Residuals: | 21 | BIC: | 220.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 735.1426 | 174.127 | 4.222 | 0.000 | 373.027 1097.259 |
expression | -72.7487 | 19.317 | -3.766 | 0.001 | -112.921 -32.576 |
Omnibus: | 8.911 | Durbin-Watson: | 2.304 |
Prob(Omnibus): | 0.012 | Jarque-Bera (JB): | 2.588 |
Skew: | 0.405 | Prob(JB): | 0.274 |
Kurtosis: | 1.570 | Cond. No. | 285. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.153 | 0.304 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.511 |
Model: | OLS | Adj. R-squared: | 0.377 |
Method: | Least Squares | F-statistic: | 3.829 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0423 |
Time: | 05:00:22 | Log-Likelihood: | -69.937 |
No. Observations: | 15 | AIC: | 147.9 |
Df Residuals: | 11 | BIC: | 150.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 666.0834 | 515.101 | 1.293 | 0.222 | -467.646 1799.812 |
C(dose)[T.1] | -411.4929 | 835.219 | -0.493 | 0.632 | -2249.797 1426.811 |
expression | -63.2805 | 54.435 | -1.162 | 0.270 | -183.092 56.531 |
expression:C(dose)[T.1] | 48.8113 | 87.843 | 0.556 | 0.590 | -144.530 242.153 |
Omnibus: | 2.720 | Durbin-Watson: | 1.212 |
Prob(Omnibus): | 0.257 | Jarque-Bera (JB): | 1.832 |
Skew: | -0.839 | Prob(JB): | 0.400 |
Kurtosis: | 2.663 | Cond. No. | 1.31e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.497 |
Model: | OLS | Adj. R-squared: | 0.413 |
Method: | Least Squares | F-statistic: | 5.931 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0162 |
Time: | 05:00:22 | Log-Likelihood: | -70.145 |
No. Observations: | 15 | AIC: | 146.3 |
Df Residuals: | 12 | BIC: | 148.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 488.7570 | 392.518 | 1.245 | 0.237 | -366.467 1343.981 |
C(dose)[T.1] | 52.5251 | 15.350 | 3.422 | 0.005 | 19.080 85.970 |
expression | -44.5363 | 41.475 | -1.074 | 0.304 | -134.902 45.829 |
Omnibus: | 2.915 | Durbin-Watson: | 1.003 |
Prob(Omnibus): | 0.233 | Jarque-Bera (JB): | 2.070 |
Skew: | -0.883 | Prob(JB): | 0.355 |
Kurtosis: | 2.559 | Cond. No. | 504. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:00:22 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.006 |
Model: | OLS | Adj. R-squared: | -0.070 |
Method: | Least Squares | F-statistic: | 0.08377 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.777 |
Time: | 05:00:22 | Log-Likelihood: | -75.252 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 244.5028 | 521.242 | 0.469 | 0.647 | -881.571 1370.577 |
expression | -15.8772 | 54.856 | -0.289 | 0.777 | -134.386 102.632 |
Omnibus: | 1.169 | Durbin-Watson: | 1.730 |
Prob(Omnibus): | 0.557 | Jarque-Bera (JB): | 0.774 |
Skew: | 0.120 | Prob(JB): | 0.679 |
Kurtosis: | 1.914 | Cond. No. | 494. |