AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.856 0.039 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.719
Model: OLS Adj. R-squared: 0.675
Method: Least Squares F-statistic: 16.21
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.80e-05
Time: 06:19:45 Log-Likelihood: -98.503
No. Observations: 23 AIC: 205.0
Df Residuals: 19 BIC: 209.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 187.7185 63.968 2.935 0.009 53.831 321.606
C(dose)[T.1] 1.7712 153.124 0.012 0.991 -318.721 322.263
expression -20.3065 9.692 -2.095 0.050 -40.593 -0.020
expression:C(dose)[T.1] 7.5024 23.784 0.315 0.756 -42.278 57.282
Omnibus: 0.088 Durbin-Watson: 1.122
Prob(Omnibus): 0.957 Jarque-Bera (JB): 0.201
Skew: -0.125 Prob(JB): 0.904
Kurtosis: 2.616 Cond. No. 291.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.718
Model: OLS Adj. R-squared: 0.689
Method: Least Squares F-statistic: 25.41
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.22e-06
Time: 06:19:45 Log-Likelihood: -98.563
No. Observations: 23 AIC: 203.1
Df Residuals: 20 BIC: 206.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 179.5265 57.128 3.143 0.005 60.359 298.694
C(dose)[T.1] 50.0038 8.011 6.242 0.000 33.294 66.714
expression -19.0605 8.650 -2.204 0.039 -37.103 -1.018
Omnibus: 0.068 Durbin-Watson: 1.166
Prob(Omnibus): 0.967 Jarque-Bera (JB): 0.117
Skew: -0.088 Prob(JB): 0.943
Kurtosis: 2.698 Cond. No. 97.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 06:19:45 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.167
Model: OLS Adj. R-squared: 0.128
Method: Least Squares F-statistic: 4.225
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0525
Time: 06:19:45 Log-Likelihood: -111.00
No. Observations: 23 AIC: 226.0
Df Residuals: 21 BIC: 228.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 269.6172 92.621 2.911 0.008 77.000 462.234
expression -29.2553 14.233 -2.055 0.052 -58.854 0.344
Omnibus: 1.903 Durbin-Watson: 2.242
Prob(Omnibus): 0.386 Jarque-Bera (JB): 1.485
Skew: 0.449 Prob(JB): 0.476
Kurtosis: 2.139 Cond. No. 93.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.330 0.576 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.561
Method: Least Squares F-statistic: 6.972
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00678
Time: 06:19:45 Log-Likelihood: -67.311
No. Observations: 15 AIC: 142.6
Df Residuals: 11 BIC: 145.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 597.3584 366.951 1.628 0.132 -210.294 1405.011
C(dose)[T.1] -1135.1999 479.364 -2.368 0.037 -2190.273 -80.127
expression -64.6021 44.719 -1.445 0.176 -163.028 33.823
expression:C(dose)[T.1] 145.0004 58.603 2.474 0.031 16.016 273.985
Omnibus: 0.278 Durbin-Watson: 1.206
Prob(Omnibus): 0.870 Jarque-Bera (JB): 0.373
Skew: -0.258 Prob(JB): 0.830
Kurtosis: 2.425 Cond. No. 845.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.464
Model: OLS Adj. R-squared: 0.374
Method: Least Squares F-statistic: 5.184
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0238
Time: 06:19:45 Log-Likelihood: -70.630
No. Observations: 15 AIC: 147.3
Df Residuals: 12 BIC: 149.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -95.2431 283.422 -0.336 0.743 -712.766 522.280
C(dose)[T.1] 50.4393 15.678 3.217 0.007 16.281 84.598
expression 19.8308 34.523 0.574 0.576 -55.389 95.051
Omnibus: 2.755 Durbin-Watson: 0.653
Prob(Omnibus): 0.252 Jarque-Bera (JB): 2.010
Skew: -0.859 Prob(JB): 0.366
Kurtosis: 2.482 Cond. No. 304.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 06:19:45 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.076
Method: Least Squares F-statistic: 0.01008
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.922
Time: 06:19:45 Log-Likelihood: -75.294
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 56.8890 366.419 0.155 0.879 -734.712 848.490
expression 4.5018 44.835 0.100 0.922 -92.357 101.361
Omnibus: 0.483 Durbin-Watson: 1.616
Prob(Omnibus): 0.785 Jarque-Bera (JB): 0.533
Skew: -0.001 Prob(JB): 0.766
Kurtosis: 2.077 Cond. No. 299.