AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.133 0.720 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.597
Method: Least Squares F-statistic: 11.86
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000132
Time: 23:01:30 Log-Likelihood: -100.97
No. Observations: 23 AIC: 209.9
Df Residuals: 19 BIC: 214.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 76.6998 69.313 1.107 0.282 -68.374 221.773
C(dose)[T.1] 39.2278 78.652 0.499 0.624 -125.392 203.848
expression -6.8499 21.025 -0.326 0.748 -50.856 37.156
expression:C(dose)[T.1] 4.2852 23.822 0.180 0.859 -45.575 54.145
Omnibus: 0.836 Durbin-Watson: 1.914
Prob(Omnibus): 0.658 Jarque-Bera (JB): 0.720
Skew: 0.040 Prob(JB): 0.698
Kurtosis: 2.137 Cond. No. 93.0

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.68
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.65e-05
Time: 23:01:30 Log-Likelihood: -100.99
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 65.7395 32.234 2.039 0.055 -1.499 132.978
C(dose)[T.1] 53.2839 8.742 6.095 0.000 35.048 71.520
expression -3.5119 9.643 -0.364 0.720 -23.626 16.603
Omnibus: 0.840 Durbin-Watson: 1.892
Prob(Omnibus): 0.657 Jarque-Bera (JB): 0.722
Skew: 0.047 Prob(JB): 0.697
Kurtosis: 2.137 Cond. No. 26.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:01:30 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.044
Method: Least Squares F-statistic: 0.07983
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.780
Time: 23:01:30 Log-Likelihood: -113.06
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 94.4406 52.605 1.795 0.087 -14.957 203.839
expression -4.4939 15.905 -0.283 0.780 -37.571 28.583
Omnibus: 3.542 Durbin-Watson: 2.499
Prob(Omnibus): 0.170 Jarque-Bera (JB): 1.616
Skew: 0.289 Prob(JB): 0.446
Kurtosis: 1.837 Cond. No. 26.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.674 0.220 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.535
Model: OLS Adj. R-squared: 0.409
Method: Least Squares F-statistic: 4.223
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0324
Time: 23:01:31 Log-Likelihood: -69.553
No. Observations: 15 AIC: 147.1
Df Residuals: 11 BIC: 149.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 106.6689 158.338 0.674 0.514 -241.830 455.168
C(dose)[T.1] -67.5484 167.935 -0.402 0.695 -437.171 302.074
expression -11.8111 47.543 -0.248 0.808 -116.452 92.830
expression:C(dose)[T.1] 33.5267 49.978 0.671 0.516 -76.474 143.528
Omnibus: 2.211 Durbin-Watson: 0.727
Prob(Omnibus): 0.331 Jarque-Bera (JB): 1.667
Skew: -0.759 Prob(JB): 0.435
Kurtosis: 2.399 Cond. No. 135.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.516
Model: OLS Adj. R-squared: 0.436
Method: Least Squares F-statistic: 6.403
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0128
Time: 23:01:31 Log-Likelihood: -69.853
No. Observations: 15 AIC: 145.7
Df Residuals: 12 BIC: 147.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 5.8720 48.778 0.120 0.906 -100.405 112.150
C(dose)[T.1] 44.6249 15.162 2.943 0.012 11.590 77.660
expression 18.5281 14.320 1.294 0.220 -12.672 49.728
Omnibus: 1.672 Durbin-Watson: 0.847
Prob(Omnibus): 0.433 Jarque-Bera (JB): 1.336
Skew: -0.633 Prob(JB): 0.513
Kurtosis: 2.270 Cond. No. 25.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:01:31 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.167
Model: OLS Adj. R-squared: 0.103
Method: Least Squares F-statistic: 2.607
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.130
Time: 23:01:31 Log-Likelihood: -73.929
No. Observations: 15 AIC: 151.9
Df Residuals: 13 BIC: 153.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -4.2483 61.342 -0.069 0.946 -136.770 128.273
expression 28.3489 17.556 1.615 0.130 -9.578 66.276
Omnibus: 0.183 Durbin-Watson: 1.722
Prob(Omnibus): 0.912 Jarque-Bera (JB): 0.385
Skew: 0.065 Prob(JB): 0.825
Kurtosis: 2.226 Cond. No. 25.0