AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.670 0.423 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.673
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 13.03
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.41e-05
Time: 04:03:38 Log-Likelihood: -100.25
No. Observations: 23 AIC: 208.5
Df Residuals: 19 BIC: 213.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 59.2803 168.313 0.352 0.729 -293.004 411.564
C(dose)[T.1] 288.3218 264.285 1.091 0.289 -264.834 841.477
expression -0.7703 25.546 -0.030 0.976 -54.238 52.697
expression:C(dose)[T.1] -32.5156 38.079 -0.854 0.404 -112.217 47.186
Omnibus: 1.280 Durbin-Watson: 1.718
Prob(Omnibus): 0.527 Jarque-Bera (JB): 0.957
Skew: 0.209 Prob(JB): 0.620
Kurtosis: 2.093 Cond. No. 544.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.660
Model: OLS Adj. R-squared: 0.626
Method: Least Squares F-statistic: 19.45
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.04e-05
Time: 04:03:38 Log-Likelihood: -100.68
No. Observations: 23 AIC: 207.4
Df Residuals: 20 BIC: 210.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 155.6342 124.036 1.255 0.224 -103.101 414.369
C(dose)[T.1] 63.0019 14.622 4.309 0.000 32.502 93.502
expression -15.4037 18.816 -0.819 0.423 -54.653 23.845
Omnibus: 0.736 Durbin-Watson: 1.813
Prob(Omnibus): 0.692 Jarque-Bera (JB): 0.759
Skew: 0.247 Prob(JB): 0.684
Kurtosis: 2.259 Cond. No. 204.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:03:38 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.345
Model: OLS Adj. R-squared: 0.314
Method: Least Squares F-statistic: 11.07
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00320
Time: 04:03:38 Log-Likelihood: -108.24
No. Observations: 23 AIC: 220.5
Df Residuals: 21 BIC: 222.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -264.9023 103.735 -2.554 0.018 -480.630 -49.174
expression 50.0565 15.044 3.327 0.003 18.771 81.342
Omnibus: 0.448 Durbin-Watson: 2.029
Prob(Omnibus): 0.799 Jarque-Bera (JB): 0.557
Skew: -0.081 Prob(JB): 0.757
Kurtosis: 2.255 Cond. No. 125.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.330 0.577 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.464
Model: OLS Adj. R-squared: 0.317
Method: Least Squares F-statistic: 3.169
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0677
Time: 04:03:38 Log-Likelihood: -70.628
No. Observations: 15 AIC: 149.3
Df Residuals: 11 BIC: 152.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 132.0254 122.176 1.081 0.303 -136.883 400.934
C(dose)[T.1] 36.0919 366.918 0.098 0.923 -771.490 843.673
expression -10.4161 19.608 -0.531 0.606 -53.573 32.741
expression:C(dose)[T.1] 2.6139 55.945 0.047 0.964 -120.521 125.749
Omnibus: 2.109 Durbin-Watson: 0.913
Prob(Omnibus): 0.348 Jarque-Bera (JB): 1.399
Skew: -0.728 Prob(JB): 0.497
Kurtosis: 2.660 Cond. No. 354.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.464
Model: OLS Adj. R-squared: 0.374
Method: Least Squares F-statistic: 5.184
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0238
Time: 04:03:38 Log-Likelihood: -70.630
No. Observations: 15 AIC: 147.3
Df Residuals: 12 BIC: 149.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 130.0341 109.638 1.186 0.259 -108.847 368.915
C(dose)[T.1] 53.2148 17.033 3.124 0.009 16.104 90.325
expression -10.0950 17.584 -0.574 0.577 -48.407 28.217
Omnibus: 2.230 Durbin-Watson: 0.910
Prob(Omnibus): 0.328 Jarque-Bera (JB): 1.445
Skew: -0.745 Prob(JB): 0.485
Kurtosis: 2.699 Cond. No. 93.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:03:38 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.027
Model: OLS Adj. R-squared: -0.048
Method: Least Squares F-statistic: 0.3622
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.558
Time: 04:03:38 Log-Likelihood: -75.094
No. Observations: 15 AIC: 154.2
Df Residuals: 13 BIC: 155.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 13.6104 133.406 0.102 0.920 -274.597 301.817
expression 12.4816 20.741 0.602 0.558 -32.326 57.289
Omnibus: 0.128 Durbin-Watson: 1.520
Prob(Omnibus): 0.938 Jarque-Bera (JB): 0.236
Skew: -0.175 Prob(JB): 0.889
Kurtosis: 2.495 Cond. No. 87.7