AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.381 0.544 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.601
Method: Least Squares F-statistic: 12.07
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000119
Time: 04:42:14 Log-Likelihood: -100.84
No. Observations: 23 AIC: 209.7
Df Residuals: 19 BIC: 214.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 93.6362 149.349 0.627 0.538 -218.955 406.228
C(dose)[T.1] 63.6714 174.806 0.364 0.720 -302.202 429.545
expression -5.6295 21.306 -0.264 0.794 -50.223 38.964
expression:C(dose)[T.1] -2.4495 25.891 -0.095 0.926 -56.640 51.741
Omnibus: 0.026 Durbin-Watson: 1.962
Prob(Omnibus): 0.987 Jarque-Bera (JB): 0.230
Skew: -0.033 Prob(JB): 0.891
Kurtosis: 2.514 Cond. No. 372.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.04
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.35e-05
Time: 04:42:14 Log-Likelihood: -100.85
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 105.2533 82.877 1.270 0.219 -67.625 278.131
C(dose)[T.1] 47.1835 13.220 3.569 0.002 19.607 74.760
expression -7.2881 11.802 -0.618 0.544 -31.906 17.330
Omnibus: 0.021 Durbin-Watson: 2.005
Prob(Omnibus): 0.990 Jarque-Bera (JB): 0.224
Skew: -0.021 Prob(JB): 0.894
Kurtosis: 2.518 Cond. No. 130.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:42:14 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.436
Model: OLS Adj. R-squared: 0.409
Method: Least Squares F-statistic: 16.25
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000603
Time: 04:42:14 Log-Likelihood: -106.51
No. Observations: 23 AIC: 217.0
Df Residuals: 21 BIC: 219.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 337.3726 64.141 5.260 0.000 203.985 470.761
expression -39.0385 9.684 -4.031 0.001 -59.176 -18.901
Omnibus: 0.603 Durbin-Watson: 2.252
Prob(Omnibus): 0.740 Jarque-Bera (JB): 0.594
Skew: 0.332 Prob(JB): 0.743
Kurtosis: 2.577 Cond. No. 80.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.322 0.093 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.569
Model: OLS Adj. R-squared: 0.451
Method: Least Squares F-statistic: 4.832
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0221
Time: 04:42:14 Log-Likelihood: -68.996
No. Observations: 15 AIC: 146.0
Df Residuals: 11 BIC: 148.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 227.8375 205.206 1.110 0.291 -223.817 679.492
C(dose)[T.1] 71.0752 236.263 0.301 0.769 -448.937 591.087
expression -26.1368 33.391 -0.783 0.450 -99.630 47.357
expression:C(dose)[T.1] -3.1902 38.305 -0.083 0.935 -87.500 81.119
Omnibus: 0.547 Durbin-Watson: 1.417
Prob(Omnibus): 0.761 Jarque-Bera (JB): 0.604
Skew: -0.258 Prob(JB): 0.739
Kurtosis: 2.163 Cond. No. 309.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.568
Model: OLS Adj. R-squared: 0.496
Method: Least Squares F-statistic: 7.898
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00647
Time: 04:42:14 Log-Likelihood: -69.000
No. Observations: 15 AIC: 144.0
Df Residuals: 12 BIC: 146.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 242.7152 96.712 2.510 0.027 31.997 453.433
C(dose)[T.1] 51.4359 13.983 3.678 0.003 20.969 81.903
expression -28.5610 15.671 -1.823 0.093 -62.705 5.583
Omnibus: 0.608 Durbin-Watson: 1.433
Prob(Omnibus): 0.738 Jarque-Bera (JB): 0.633
Skew: -0.255 Prob(JB): 0.729
Kurtosis: 2.132 Cond. No. 88.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:42:14 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.082
Model: OLS Adj. R-squared: 0.011
Method: Least Squares F-statistic: 1.154
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.302
Time: 04:42:14 Log-Likelihood: -74.662
No. Observations: 15 AIC: 153.3
Df Residuals: 13 BIC: 154.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 238.8492 135.523 1.762 0.101 -53.930 531.628
expression -23.4957 21.876 -1.074 0.302 -70.755 23.764
Omnibus: 0.355 Durbin-Watson: 1.765
Prob(Omnibus): 0.837 Jarque-Bera (JB): 0.490
Skew: 0.195 Prob(JB): 0.783
Kurtosis: 2.204 Cond. No. 88.4