AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.344 0.564 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.601
Method: Least Squares F-statistic: 12.07
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000119
Time: 03:41:08 Log-Likelihood: -100.84
No. Observations: 23 AIC: 209.7
Df Residuals: 19 BIC: 214.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 77.1127 71.012 1.086 0.291 -71.516 225.742
C(dose)[T.1] 81.3824 121.770 0.668 0.512 -173.485 336.250
expression -3.3939 10.483 -0.324 0.750 -25.334 18.546
expression:C(dose)[T.1] -3.5467 17.050 -0.208 0.837 -39.233 32.139
Omnibus: 0.466 Durbin-Watson: 1.912
Prob(Omnibus): 0.792 Jarque-Bera (JB): 0.570
Skew: 0.103 Prob(JB): 0.752
Kurtosis: 2.257 Cond. No. 243.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 18.99
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.39e-05
Time: 03:41:08 Log-Likelihood: -100.87
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 86.1603 54.774 1.573 0.131 -28.096 200.417
C(dose)[T.1] 56.1403 9.921 5.659 0.000 35.446 76.835
expression -4.7345 8.067 -0.587 0.564 -21.562 12.093
Omnibus: 0.301 Durbin-Watson: 1.888
Prob(Omnibus): 0.860 Jarque-Bera (JB): 0.472
Skew: 0.046 Prob(JB): 0.790
Kurtosis: 2.304 Cond. No. 91.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:41:08 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.103
Model: OLS Adj. R-squared: 0.060
Method: Least Squares F-statistic: 2.401
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.136
Time: 03:41:08 Log-Likelihood: -111.86
No. Observations: 23 AIC: 227.7
Df Residuals: 21 BIC: 230.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -41.5424 78.554 -0.529 0.602 -204.904 121.819
expression 17.2443 11.129 1.550 0.136 -5.899 40.388
Omnibus: 3.515 Durbin-Watson: 2.507
Prob(Omnibus): 0.172 Jarque-Bera (JB): 1.453
Skew: 0.166 Prob(JB): 0.484
Kurtosis: 1.814 Cond. No. 82.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.411 0.534 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.571
Model: OLS Adj. R-squared: 0.454
Method: Least Squares F-statistic: 4.873
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0215
Time: 03:41:09 Log-Likelihood: -68.959
No. Observations: 15 AIC: 145.9
Df Residuals: 11 BIC: 148.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 171.6946 178.183 0.964 0.356 -220.483 563.872
C(dose)[T.1] -412.2946 278.896 -1.478 0.167 -1026.141 201.552
expression -17.0996 29.170 -0.586 0.570 -81.303 47.104
expression:C(dose)[T.1] 70.8280 43.475 1.629 0.132 -24.859 166.515
Omnibus: 0.950 Durbin-Watson: 1.629
Prob(Omnibus): 0.622 Jarque-Bera (JB): 0.731
Skew: -0.486 Prob(JB): 0.694
Kurtosis: 2.525 Cond. No. 329.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.467
Model: OLS Adj. R-squared: 0.378
Method: Least Squares F-statistic: 5.257
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0229
Time: 03:41:09 Log-Likelihood: -70.581
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -22.7379 141.136 -0.161 0.875 -330.247 284.771
C(dose)[T.1] 41.0462 20.031 2.049 0.063 -2.598 84.690
expression 14.7873 23.072 0.641 0.534 -35.482 65.057
Omnibus: 2.003 Durbin-Watson: 0.786
Prob(Omnibus): 0.367 Jarque-Bera (JB): 1.564
Skew: -0.694 Prob(JB): 0.458
Kurtosis: 2.243 Cond. No. 121.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:41:09 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.281
Model: OLS Adj. R-squared: 0.225
Method: Least Squares F-statistic: 5.069
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0423
Time: 03:41:09 Log-Likelihood: -72.831
No. Observations: 15 AIC: 149.7
Df Residuals: 13 BIC: 151.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -192.6771 127.478 -1.511 0.155 -468.077 82.723
expression 44.8006 19.899 2.251 0.042 1.811 87.790
Omnibus: 0.642 Durbin-Watson: 1.298
Prob(Omnibus): 0.726 Jarque-Bera (JB): 0.652
Skew: -0.378 Prob(JB): 0.722
Kurtosis: 2.313 Cond. No. 97.0