AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.294 | 0.594 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.713 |
Model: | OLS | Adj. R-squared: | 0.668 |
Method: | Least Squares | F-statistic: | 15.74 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.20e-05 |
Time: | 22:45:57 | Log-Likelihood: | -98.747 |
No. Observations: | 23 | AIC: | 205.5 |
Df Residuals: | 19 | BIC: | 210.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -77.8248 | 125.681 | -0.619 | 0.543 | -340.879 185.229 |
C(dose)[T.1] | 395.2017 | 172.878 | 2.286 | 0.034 | 33.363 757.041 |
expression | 19.5496 | 18.590 | 1.052 | 0.306 | -19.361 58.460 |
expression:C(dose)[T.1] | -50.1453 | 25.386 | -1.975 | 0.063 | -103.279 2.989 |
Omnibus: | 0.147 | Durbin-Watson: | 2.427 |
Prob(Omnibus): | 0.929 | Jarque-Bera (JB): | 0.341 |
Skew: | 0.128 | Prob(JB): | 0.843 |
Kurtosis: | 2.461 | Cond. No. | 390. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.620 |
Method: | Least Squares | F-statistic: | 18.91 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.45e-05 |
Time: | 22:45:57 | Log-Likelihood: | -100.90 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 103.7937 | 91.691 | 1.132 | 0.271 | -87.470 295.057 |
C(dose)[T.1] | 54.1041 | 8.820 | 6.134 | 0.000 | 35.705 72.503 |
expression | -7.3419 | 13.547 | -0.542 | 0.594 | -35.600 20.917 |
Omnibus: | 0.564 | Durbin-Watson: | 1.859 |
Prob(Omnibus): | 0.754 | Jarque-Bera (JB): | 0.646 |
Skew: | 0.194 | Prob(JB): | 0.724 |
Kurtosis: | 2.277 | Cond. No. | 147. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:45:57 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.003 |
Model: | OLS | Adj. R-squared: | -0.044 |
Method: | Least Squares | F-statistic: | 0.07314 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.789 |
Time: | 22:45:57 | Log-Likelihood: | -113.06 |
No. Observations: | 23 | AIC: | 230.1 |
Df Residuals: | 21 | BIC: | 232.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 38.9615 | 150.875 | 0.258 | 0.799 | -274.801 352.724 |
expression | 5.9902 | 22.150 | 0.270 | 0.789 | -40.074 52.054 |
Omnibus: | 2.730 | Durbin-Watson: | 2.486 |
Prob(Omnibus): | 0.255 | Jarque-Bera (JB): | 1.528 |
Skew: | 0.339 | Prob(JB): | 0.466 |
Kurtosis: | 1.934 | Cond. No. | 146. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.664 | 0.129 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.648 |
Model: | OLS | Adj. R-squared: | 0.552 |
Method: | Least Squares | F-statistic: | 6.751 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00758 |
Time: | 22:45:57 | Log-Likelihood: | -67.469 |
No. Observations: | 15 | AIC: | 142.9 |
Df Residuals: | 11 | BIC: | 145.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 47.1392 | 125.248 | 0.376 | 0.714 | -228.529 322.808 |
C(dose)[T.1] | -285.4846 | 189.972 | -1.503 | 0.161 | -703.610 132.641 |
expression | 2.8521 | 17.555 | 0.162 | 0.874 | -35.785 41.489 |
expression:C(dose)[T.1] | 46.7018 | 26.537 | 1.760 | 0.106 | -11.705 105.109 |
Omnibus: | 12.292 | Durbin-Watson: | 1.315 |
Prob(Omnibus): | 0.002 | Jarque-Bera (JB): | 8.400 |
Skew: | -1.609 | Prob(JB): | 0.0150 |
Kurtosis: | 4.756 | Cond. No. | 273. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.549 |
Model: | OLS | Adj. R-squared: | 0.474 |
Method: | Least Squares | F-statistic: | 7.301 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00842 |
Time: | 22:45:57 | Log-Likelihood: | -69.329 |
No. Observations: | 15 | AIC: | 144.7 |
Df Residuals: | 12 | BIC: | 146.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -98.2465 | 102.036 | -0.963 | 0.355 | -320.565 124.071 |
C(dose)[T.1] | 48.0434 | 14.256 | 3.370 | 0.006 | 16.983 79.104 |
expression | 23.2892 | 14.269 | 1.632 | 0.129 | -7.800 54.378 |
Omnibus: | 3.431 | Durbin-Watson: | 0.851 |
Prob(Omnibus): | 0.180 | Jarque-Bera (JB): | 1.661 |
Skew: | -0.802 | Prob(JB): | 0.436 |
Kurtosis: | 3.295 | Cond. No. | 105. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:45:57 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.122 |
Model: | OLS | Adj. R-squared: | 0.054 |
Method: | Least Squares | F-statistic: | 1.806 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.202 |
Time: | 22:45:57 | Log-Likelihood: | -74.324 |
No. Observations: | 15 | AIC: | 152.6 |
Df Residuals: | 13 | BIC: | 154.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -89.6372 | 136.729 | -0.656 | 0.524 | -385.022 205.747 |
expression | 25.6721 | 19.103 | 1.344 | 0.202 | -15.597 66.941 |
Omnibus: | 2.577 | Durbin-Watson: | 1.788 |
Prob(Omnibus): | 0.276 | Jarque-Bera (JB): | 1.200 |
Skew: | -0.291 | Prob(JB): | 0.549 |
Kurtosis: | 1.742 | Cond. No. | 105. |