AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.580 0.455 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.609
Method: Least Squares F-statistic: 12.40
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000101
Time: 04:24:35 Log-Likelihood: -100.63
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 208.8689 198.092 1.054 0.305 -205.742 623.479
C(dose)[T.1] -48.0731 252.833 -0.190 0.851 -577.259 481.112
expression -20.2429 25.915 -0.781 0.444 -74.484 33.998
expression:C(dose)[T.1] 13.4697 32.715 0.412 0.685 -55.004 81.944
Omnibus: 0.968 Durbin-Watson: 1.957
Prob(Omnibus): 0.616 Jarque-Bera (JB): 0.766
Skew: 0.024 Prob(JB): 0.682
Kurtosis: 2.107 Cond. No. 620.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.625
Method: Least Squares F-statistic: 19.32
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.13e-05
Time: 04:24:35 Log-Likelihood: -100.73
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 144.2938 118.462 1.218 0.237 -102.813 391.401
C(dose)[T.1] 55.9503 9.302 6.015 0.000 36.547 75.353
expression -11.7909 15.485 -0.761 0.455 -44.093 20.511
Omnibus: 0.845 Durbin-Watson: 1.901
Prob(Omnibus): 0.655 Jarque-Bera (JB): 0.755
Skew: 0.143 Prob(JB): 0.686
Kurtosis: 2.160 Cond. No. 217.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:24:35 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.042
Model: OLS Adj. R-squared: -0.004
Method: Least Squares F-statistic: 0.9197
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.348
Time: 04:24:35 Log-Likelihood: -112.61
No. Observations: 23 AIC: 229.2
Df Residuals: 21 BIC: 231.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -95.1596 182.491 -0.521 0.608 -474.670 284.351
expression 22.5758 23.541 0.959 0.348 -26.380 71.532
Omnibus: 4.752 Durbin-Watson: 2.371
Prob(Omnibus): 0.093 Jarque-Bera (JB): 1.722
Skew: 0.224 Prob(JB): 0.423
Kurtosis: 1.736 Cond. No. 204.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.086 0.775 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.454
Model: OLS Adj. R-squared: 0.305
Method: Least Squares F-statistic: 3.043
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0744
Time: 04:24:35 Log-Likelihood: -70.768
No. Observations: 15 AIC: 149.5
Df Residuals: 11 BIC: 152.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 85.2281 126.490 0.674 0.514 -193.175 363.631
C(dose)[T.1] 81.1626 220.338 0.368 0.720 -403.798 566.124
expression -2.6958 19.071 -0.141 0.890 -44.672 39.280
expression:C(dose)[T.1] -4.1951 31.391 -0.134 0.896 -73.286 64.896
Omnibus: 2.209 Durbin-Watson: 0.796
Prob(Omnibus): 0.331 Jarque-Bera (JB): 1.582
Skew: -0.760 Prob(JB): 0.453
Kurtosis: 2.529 Cond. No. 242.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.453
Model: OLS Adj. R-squared: 0.361
Method: Least Squares F-statistic: 4.962
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0269
Time: 04:24:35 Log-Likelihood: -70.780
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 95.4523 96.521 0.989 0.342 -114.849 305.754
C(dose)[T.1] 51.8245 18.077 2.867 0.014 12.439 91.210
expression -4.2443 14.515 -0.292 0.775 -35.870 27.381
Omnibus: 2.337 Durbin-Watson: 0.816
Prob(Omnibus): 0.311 Jarque-Bera (JB): 1.644
Skew: -0.781 Prob(JB): 0.440
Kurtosis: 2.565 Cond. No. 88.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:24:35 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.078
Model: OLS Adj. R-squared: 0.007
Method: Least Squares F-statistic: 1.097
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.314
Time: 04:24:35 Log-Likelihood: -74.693
No. Observations: 15 AIC: 153.4
Df Residuals: 13 BIC: 154.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -20.3559 109.326 -0.186 0.855 -256.539 215.828
expression 16.4464 15.706 1.047 0.314 -17.484 50.377
Omnibus: 0.837 Durbin-Watson: 1.332
Prob(Omnibus): 0.658 Jarque-Bera (JB): 0.670
Skew: -0.101 Prob(JB): 0.715
Kurtosis: 1.984 Cond. No. 79.6