AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.007 | 0.933 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.594 |
Method: | Least Squares | F-statistic: | 11.72 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000142 |
Time: | 04:03:56 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 210.1 |
Df Residuals: | 19 | BIC: | 214.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 51.5660 | 46.735 | 1.103 | 0.284 | -46.251 149.383 |
C(dose)[T.1] | 51.1790 | 88.123 | 0.581 | 0.568 | -133.265 235.623 |
expression | 0.4744 | 8.317 | 0.057 | 0.955 | -16.932 17.881 |
expression:C(dose)[T.1] | 0.3945 | 15.832 | 0.025 | 0.980 | -32.743 33.532 |
Omnibus: | 0.262 | Durbin-Watson: | 1.887 |
Prob(Omnibus): | 0.877 | Jarque-Bera (JB): | 0.447 |
Skew: | 0.035 | Prob(JB): | 0.800 |
Kurtosis: | 2.320 | Cond. No. | 134. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.82e-05 |
Time: | 04:03:56 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 50.9597 | 38.892 | 1.310 | 0.205 | -30.168 132.087 |
C(dose)[T.1] | 53.3633 | 8.774 | 6.082 | 0.000 | 35.062 71.665 |
expression | 0.5833 | 6.898 | 0.085 | 0.933 | -13.805 14.972 |
Omnibus: | 0.279 | Durbin-Watson: | 1.887 |
Prob(Omnibus): | 0.870 | Jarque-Bera (JB): | 0.458 |
Skew: | 0.039 | Prob(JB): | 0.795 |
Kurtosis: | 2.313 | Cond. No. | 51.3 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:03:56 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.006269 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.938 |
Time: | 04:03:56 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 84.7058 | 63.416 | 1.336 | 0.196 | -47.174 216.586 |
expression | -0.8991 | 11.356 | -0.079 | 0.938 | -24.516 22.717 |
Omnibus: | 3.316 | Durbin-Watson: | 2.488 |
Prob(Omnibus): | 0.190 | Jarque-Bera (JB): | 1.581 |
Skew: | 0.295 | Prob(JB): | 0.454 |
Kurtosis: | 1.859 | Cond. No. | 50.6 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.798 | 0.075 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.583 |
Model: | OLS | Adj. R-squared: | 0.469 |
Method: | Least Squares | F-statistic: | 5.128 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0185 |
Time: | 04:03:56 | Log-Likelihood: | -68.739 |
No. Observations: | 15 | AIC: | 145.5 |
Df Residuals: | 11 | BIC: | 148.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 235.8458 | 109.055 | 2.163 | 0.053 | -4.182 475.874 |
C(dose)[T.1] | 15.2464 | 167.034 | 0.091 | 0.929 | -352.394 382.887 |
expression | -28.5268 | 18.387 | -1.551 | 0.149 | -68.996 11.943 |
expression:C(dose)[T.1] | 6.0655 | 27.965 | 0.217 | 0.832 | -55.486 67.617 |
Omnibus: | 5.846 | Durbin-Watson: | 1.247 |
Prob(Omnibus): | 0.054 | Jarque-Bera (JB): | 2.825 |
Skew: | -0.878 | Prob(JB): | 0.243 |
Kurtosis: | 4.199 | Cond. No. | 185. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.581 |
Model: | OLS | Adj. R-squared: | 0.512 |
Method: | Least Squares | F-statistic: | 8.330 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00539 |
Time: | 04:03:56 | Log-Likelihood: | -68.771 |
No. Observations: | 15 | AIC: | 143.5 |
Df Residuals: | 12 | BIC: | 145.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 220.3655 | 79.113 | 2.785 | 0.016 | 47.992 392.739 |
C(dose)[T.1] | 51.3410 | 13.762 | 3.731 | 0.003 | 21.356 81.326 |
expression | -25.9047 | 13.292 | -1.949 | 0.075 | -54.866 3.057 |
Omnibus: | 6.068 | Durbin-Watson: | 1.198 |
Prob(Omnibus): | 0.048 | Jarque-Bera (JB): | 2.972 |
Skew: | -0.853 | Prob(JB): | 0.226 |
Kurtosis: | 4.358 | Cond. No. | 71.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:03:56 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.096 |
Model: | OLS | Adj. R-squared: | 0.026 |
Method: | Least Squares | F-statistic: | 1.375 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.262 |
Time: | 04:03:57 | Log-Likelihood: | -74.546 |
No. Observations: | 15 | AIC: | 153.1 |
Df Residuals: | 13 | BIC: | 154.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 224.1620 | 111.697 | 2.007 | 0.066 | -17.145 465.469 |
expression | -21.9394 | 18.709 | -1.173 | 0.262 | -62.357 18.478 |
Omnibus: | 1.621 | Durbin-Watson: | 2.138 |
Prob(Omnibus): | 0.445 | Jarque-Bera (JB): | 1.007 |
Skew: | 0.307 | Prob(JB): | 0.604 |
Kurtosis: | 1.889 | Cond. No. | 70.9 |