AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.772 0.390 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.673
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 13.02
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.47e-05
Time: 03:41:20 Log-Likelihood: -100.26
No. Observations: 23 AIC: 208.5
Df Residuals: 19 BIC: 213.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 55.8700 63.446 0.881 0.390 -76.924 188.664
C(dose)[T.1] 120.1087 86.475 1.389 0.181 -60.886 301.104
expression -0.2660 10.111 -0.026 0.979 -21.429 20.897
expression:C(dose)[T.1] -10.9079 13.901 -0.785 0.442 -40.003 18.187
Omnibus: 0.664 Durbin-Watson: 1.803
Prob(Omnibus): 0.717 Jarque-Bera (JB): 0.683
Skew: 0.157 Prob(JB): 0.711
Kurtosis: 2.216 Cond. No. 167.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 19.59
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.94e-05
Time: 03:41:20 Log-Likelihood: -100.63
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 91.9199 43.335 2.121 0.047 1.524 182.316
C(dose)[T.1] 52.5996 8.646 6.084 0.000 34.564 70.635
expression -6.0372 6.872 -0.879 0.390 -20.371 8.297
Omnibus: 0.588 Durbin-Watson: 1.844
Prob(Omnibus): 0.745 Jarque-Bera (JB): 0.647
Skew: 0.159 Prob(JB): 0.724
Kurtosis: 2.242 Cond. No. 64.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:41:20 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.037
Model: OLS Adj. R-squared: -0.009
Method: Least Squares F-statistic: 0.8027
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.380
Time: 03:41:20 Log-Likelihood: -112.67
No. Observations: 23 AIC: 229.3
Df Residuals: 21 BIC: 231.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 142.1922 70.091 2.029 0.055 -3.570 287.954
expression -10.0960 11.269 -0.896 0.380 -33.531 13.339
Omnibus: 3.325 Durbin-Watson: 2.295
Prob(Omnibus): 0.190 Jarque-Bera (JB): 1.486
Skew: 0.228 Prob(JB): 0.476
Kurtosis: 1.841 Cond. No. 63.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.000 0.992 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.463
Model: OLS Adj. R-squared: 0.317
Method: Least Squares F-statistic: 3.163
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0680
Time: 03:41:20 Log-Likelihood: -70.635
No. Observations: 15 AIC: 149.3
Df Residuals: 11 BIC: 152.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 95.3094 107.740 0.885 0.395 -141.825 332.444
C(dose)[T.1] -64.6905 210.880 -0.307 0.765 -528.834 399.453
expression -4.2795 16.437 -0.260 0.799 -40.457 31.898
expression:C(dose)[T.1] 17.9425 33.112 0.542 0.599 -54.937 90.822
Omnibus: 2.428 Durbin-Watson: 0.833
Prob(Omnibus): 0.297 Jarque-Bera (JB): 1.616
Skew: -0.787 Prob(JB): 0.446
Kurtosis: 2.668 Cond. No. 205.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.885
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0281
Time: 03:41:20 Log-Likelihood: -70.833
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 66.5044 90.913 0.732 0.479 -131.578 264.587
C(dose)[T.1] 49.2277 16.032 3.071 0.010 14.297 84.158
expression 0.1418 13.842 0.010 0.992 -30.018 30.302
Omnibus: 2.729 Durbin-Watson: 0.808
Prob(Omnibus): 0.256 Jarque-Bera (JB): 1.877
Skew: -0.846 Prob(JB): 0.391
Kurtosis: 2.623 Cond. No. 76.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:41:20 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.016
Model: OLS Adj. R-squared: -0.060
Method: Least Squares F-statistic: 0.2069
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.657
Time: 03:41:20 Log-Likelihood: -75.182
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 144.4443 112.080 1.289 0.220 -97.691 386.579
expression -7.9370 17.448 -0.455 0.657 -45.632 29.758
Omnibus: 1.224 Durbin-Watson: 1.598
Prob(Omnibus): 0.542 Jarque-Bera (JB): 0.789
Skew: 0.121 Prob(JB): 0.674
Kurtosis: 1.903 Cond. No. 73.1