AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.043 | 0.837 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.597 |
Method: | Least Squares | F-statistic: | 11.88 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.000131 |
Time: | 19:23:36 | Log-Likelihood: | -100.96 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 60.2312 | 74.974 | 0.803 | 0.432 | -96.692 217.154 |
C(dose)[T.1] | 141.0562 | 240.913 | 0.586 | 0.565 | -363.180 645.292 |
expression | -1.0397 | 12.898 | -0.081 | 0.937 | -28.035 25.955 |
expression:C(dose)[T.1] | -15.2000 | 41.692 | -0.365 | 0.719 | -102.462 72.062 |
Omnibus: | 0.690 | Durbin-Watson: | 1.845 |
Prob(Omnibus): | 0.708 | Jarque-Bera (JB): | 0.683 |
Skew: | 0.126 | Prob(JB): | 0.711 |
Kurtosis: | 2.195 | Cond. No. | 365. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.56 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 2.77e-05 |
Time: | 19:23:36 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 68.6582 | 69.759 | 0.984 | 0.337 | -76.857 214.173 |
C(dose)[T.1] | 53.2854 | 8.764 | 6.080 | 0.000 | 35.004 71.567 |
expression | -2.4943 | 11.996 | -0.208 | 0.837 | -27.518 22.529 |
Omnibus: | 0.309 | Durbin-Watson: | 1.820 |
Prob(Omnibus): | 0.857 | Jarque-Bera (JB): | 0.480 |
Skew: | 0.098 | Prob(JB): | 0.787 |
Kurtosis: | 2.320 | Cond. No. | 95.4 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 19:23:36 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.003 |
Model: | OLS | Adj. R-squared: | -0.045 |
Method: | Least Squares | F-statistic: | 0.05345 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.819 |
Time: | 19:23:36 | Log-Likelihood: | -113.08 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 106.1246 | 114.447 | 0.927 | 0.364 | -131.880 344.129 |
expression | -4.5662 | 19.750 | -0.231 | 0.819 | -45.639 36.506 |
Omnibus: | 3.586 | Durbin-Watson: | 2.462 |
Prob(Omnibus): | 0.166 | Jarque-Bera (JB): | 1.638 |
Skew: | 0.298 | Prob(JB): | 0.441 |
Kurtosis: | 1.836 | Cond. No. | 94.7 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.004 | 0.948 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.537 |
Model: | OLS | Adj. R-squared: | 0.411 |
Method: | Least Squares | F-statistic: | 4.261 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0317 |
Time: | 19:23:36 | Log-Likelihood: | -69.517 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 11 | BIC: | 149.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -70.3041 | 120.530 | -0.583 | 0.571 | -335.590 194.981 |
C(dose)[T.1] | 260.2680 | 146.362 | 1.778 | 0.103 | -61.874 582.410 |
expression | 22.5753 | 19.673 | 1.148 | 0.276 | -20.725 65.876 |
expression:C(dose)[T.1] | -34.8673 | 24.036 | -1.451 | 0.175 | -87.771 18.036 |
Omnibus: | 0.533 | Durbin-Watson: | 1.364 |
Prob(Omnibus): | 0.766 | Jarque-Bera (JB): | 0.364 |
Skew: | -0.339 | Prob(JB): | 0.834 |
Kurtosis: | 2.648 | Cond. No. | 174. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.889 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0280 |
Time: | 19:23:36 | Log-Likelihood: | -70.830 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 72.2053 | 72.973 | 0.989 | 0.342 | -86.789 231.199 |
C(dose)[T.1] | 49.0910 | 15.817 | 3.104 | 0.009 | 14.629 83.553 |
expression | -0.7829 | 11.811 | -0.066 | 0.948 | -26.518 24.952 |
Omnibus: | 2.515 | Durbin-Watson: | 0.818 |
Prob(Omnibus): | 0.284 | Jarque-Bera (JB): | 1.754 |
Skew: | -0.812 | Prob(JB): | 0.416 |
Kurtosis: | 2.586 | Cond. No. | 58.1 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 19:23:36 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.007 |
Model: | OLS | Adj. R-squared: | -0.070 |
Method: | Least Squares | F-statistic: | 0.08687 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.773 |
Time: | 19:23:36 | Log-Likelihood: | -75.250 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 120.6051 | 91.960 | 1.312 | 0.212 | -78.062 319.272 |
expression | -4.4680 | 15.160 | -0.295 | 0.773 | -37.218 28.282 |
Omnibus: | 0.245 | Durbin-Watson: | 1.588 |
Prob(Omnibus): | 0.885 | Jarque-Bera (JB): | 0.422 |
Skew: | 0.033 | Prob(JB): | 0.810 |
Kurtosis: | 2.181 | Cond. No. | 56.6 |