AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.515 | 0.481 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.677 |
Model: | OLS | Adj. R-squared: | 0.626 |
Method: | Least Squares | F-statistic: | 13.29 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.56e-05 |
Time: | 03:50:42 | Log-Likelihood: | -100.10 |
No. Observations: | 23 | AIC: | 208.2 |
Df Residuals: | 19 | BIC: | 212.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -222.8875 | 219.685 | -1.015 | 0.323 | -682.693 236.918 |
C(dose)[T.1] | 388.4268 | 310.517 | 1.251 | 0.226 | -261.493 1038.347 |
expression | 31.3903 | 24.877 | 1.262 | 0.222 | -20.679 83.459 |
expression:C(dose)[T.1] | -38.1509 | 35.677 | -1.069 | 0.298 | -112.823 36.521 |
Omnibus: | 0.463 | Durbin-Watson: | 2.104 |
Prob(Omnibus): | 0.793 | Jarque-Bera (JB): | 0.587 |
Skew: | -0.198 | Prob(JB): | 0.746 |
Kurtosis: | 2.325 | Cond. No. | 819. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.658 |
Model: | OLS | Adj. R-squared: | 0.624 |
Method: | Least Squares | F-statistic: | 19.23 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.20e-05 |
Time: | 03:50:42 | Log-Likelihood: | -100.77 |
No. Observations: | 23 | AIC: | 207.5 |
Df Residuals: | 20 | BIC: | 210.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -59.1376 | 158.084 | -0.374 | 0.712 | -388.895 270.620 |
C(dose)[T.1] | 56.5369 | 9.740 | 5.805 | 0.000 | 36.220 76.854 |
expression | 12.8402 | 17.895 | 0.718 | 0.481 | -24.489 50.169 |
Omnibus: | 0.631 | Durbin-Watson: | 1.959 |
Prob(Omnibus): | 0.729 | Jarque-Bera (JB): | 0.643 |
Skew: | -0.077 | Prob(JB): | 0.725 |
Kurtosis: | 2.195 | Cond. No. | 323. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:50:42 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.081 |
Model: | OLS | Adj. R-squared: | 0.038 |
Method: | Least Squares | F-statistic: | 1.863 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.187 |
Time: | 03:50:42 | Log-Likelihood: | -112.13 |
No. Observations: | 23 | AIC: | 228.3 |
Df Residuals: | 21 | BIC: | 230.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 382.0738 | 221.640 | 1.724 | 0.099 | -78.851 842.999 |
expression | -34.7207 | 25.439 | -1.365 | 0.187 | -87.625 18.183 |
Omnibus: | 2.279 | Durbin-Watson: | 2.302 |
Prob(Omnibus): | 0.320 | Jarque-Bera (JB): | 1.249 |
Skew: | 0.218 | Prob(JB): | 0.535 |
Kurtosis: | 1.945 | Cond. No. | 283. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.156 | 0.168 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.533 |
Model: | OLS | Adj. R-squared: | 0.405 |
Method: | Least Squares | F-statistic: | 4.181 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0334 |
Time: | 03:50:42 | Log-Likelihood: | -69.593 |
No. Observations: | 15 | AIC: | 147.2 |
Df Residuals: | 11 | BIC: | 150.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -306.2145 | 330.302 | -0.927 | 0.374 | -1033.204 420.775 |
C(dose)[T.1] | 44.1983 | 561.468 | 0.079 | 0.939 | -1191.585 1279.981 |
expression | 39.8570 | 35.214 | 1.132 | 0.282 | -37.648 117.363 |
expression:C(dose)[T.1] | 1.4246 | 60.738 | 0.023 | 0.982 | -132.260 135.109 |
Omnibus: | 1.634 | Durbin-Watson: | 0.855 |
Prob(Omnibus): | 0.442 | Jarque-Bera (JB): | 1.213 |
Skew: | -0.648 | Prob(JB): | 0.545 |
Kurtosis: | 2.487 | Cond. No. | 864. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.533 |
Model: | OLS | Adj. R-squared: | 0.455 |
Method: | Least Squares | F-statistic: | 6.840 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0104 |
Time: | 03:50:42 | Log-Likelihood: | -69.594 |
No. Observations: | 15 | AIC: | 145.2 |
Df Residuals: | 12 | BIC: | 147.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -310.7036 | 257.746 | -1.205 | 0.251 | -872.285 250.878 |
C(dose)[T.1] | 57.3621 | 15.522 | 3.696 | 0.003 | 23.542 91.182 |
expression | 40.3359 | 27.471 | 1.468 | 0.168 | -19.518 100.190 |
Omnibus: | 1.656 | Durbin-Watson: | 0.851 |
Prob(Omnibus): | 0.437 | Jarque-Bera (JB): | 1.226 |
Skew: | -0.652 | Prob(JB): | 0.542 |
Kurtosis: | 2.490 | Cond. No. | 335. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:50:42 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.001 |
Model: | OLS | Adj. R-squared: | -0.076 |
Method: | Least Squares | F-statistic: | 0.01210 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.914 |
Time: | 03:50:42 | Log-Likelihood: | -75.293 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 56.9423 | 334.036 | 0.170 | 0.867 | -664.699 778.583 |
expression | 3.9631 | 36.031 | 0.110 | 0.914 | -73.876 81.802 |
Omnibus: | 0.892 | Durbin-Watson: | 1.641 |
Prob(Omnibus): | 0.640 | Jarque-Bera (JB): | 0.683 |
Skew: | 0.082 | Prob(JB): | 0.711 |
Kurtosis: | 1.967 | Cond. No. | 308. |