AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.128 | 0.160 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.684 |
Model: | OLS | Adj. R-squared: | 0.635 |
Method: | Least Squares | F-statistic: | 13.74 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.31e-05 |
Time: | 03:52:58 | Log-Likelihood: | -99.839 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 19 | BIC: | 212.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -434.2036 | 359.522 | -1.208 | 0.242 | -1186.692 318.285 |
C(dose)[T.1] | 254.0912 | 645.381 | 0.394 | 0.698 | -1096.707 1604.890 |
expression | 41.7799 | 30.750 | 1.359 | 0.190 | -22.581 106.141 |
expression:C(dose)[T.1] | -17.4820 | 54.726 | -0.319 | 0.753 | -132.024 97.060 |
Omnibus: | 0.149 | Durbin-Watson: | 1.670 |
Prob(Omnibus): | 0.928 | Jarque-Bera (JB): | 0.367 |
Skew: | -0.008 | Prob(JB): | 0.832 |
Kurtosis: | 2.381 | Cond. No. | 2.16e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.683 |
Model: | OLS | Adj. R-squared: | 0.651 |
Method: | Least Squares | F-statistic: | 21.53 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.03e-05 |
Time: | 03:52:58 | Log-Likelihood: | -99.900 |
No. Observations: | 23 | AIC: | 205.8 |
Df Residuals: | 20 | BIC: | 209.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -369.6789 | 290.664 | -1.272 | 0.218 | -975.993 236.635 |
C(dose)[T.1] | 47.9472 | 9.120 | 5.258 | 0.000 | 28.924 66.971 |
expression | 36.2603 | 24.859 | 1.459 | 0.160 | -15.595 88.116 |
Omnibus: | 0.074 | Durbin-Watson: | 1.739 |
Prob(Omnibus): | 0.964 | Jarque-Bera (JB): | 0.299 |
Skew: | 0.016 | Prob(JB): | 0.861 |
Kurtosis: | 2.443 | Cond. No. | 828. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:52:58 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.244 |
Model: | OLS | Adj. R-squared: | 0.208 |
Method: | Least Squares | F-statistic: | 6.793 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0165 |
Time: | 03:52:58 | Log-Likelihood: | -109.88 |
No. Observations: | 23 | AIC: | 223.8 |
Df Residuals: | 21 | BIC: | 226.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -969.5817 | 402.655 | -2.408 | 0.025 | -1806.948 -132.215 |
expression | 89.2170 | 34.232 | 2.606 | 0.016 | 18.028 160.406 |
Omnibus: | 1.174 | Durbin-Watson: | 2.227 |
Prob(Omnibus): | 0.556 | Jarque-Bera (JB): | 1.041 |
Skew: | 0.343 | Prob(JB): | 0.594 |
Kurtosis: | 2.215 | Cond. No. | 760. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.138 | 0.717 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.468 |
Model: | OLS | Adj. R-squared: | 0.323 |
Method: | Least Squares | F-statistic: | 3.222 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0651 |
Time: | 03:52:58 | Log-Likelihood: | -70.571 |
No. Observations: | 15 | AIC: | 149.1 |
Df Residuals: | 11 | BIC: | 152.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 253.5896 | 716.865 | 0.354 | 0.730 | -1324.219 1831.398 |
C(dose)[T.1] | -377.4911 | 832.110 | -0.454 | 0.659 | -2208.954 1453.972 |
expression | -16.5047 | 63.547 | -0.260 | 0.800 | -156.372 123.362 |
expression:C(dose)[T.1] | 37.7594 | 73.697 | 0.512 | 0.619 | -124.447 199.966 |
Omnibus: | 1.988 | Durbin-Watson: | 0.848 |
Prob(Omnibus): | 0.370 | Jarque-Bera (JB): | 1.512 |
Skew: | -0.635 | Prob(JB): | 0.470 |
Kurtosis: | 2.101 | Cond. No. | 1.74e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.455 |
Model: | OLS | Adj. R-squared: | 0.364 |
Method: | Least Squares | F-statistic: | 5.010 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0262 |
Time: | 03:52:58 | Log-Likelihood: | -70.747 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -63.0742 | 351.854 | -0.179 | 0.861 | -829.697 703.549 |
C(dose)[T.1] | 48.7670 | 15.693 | 3.108 | 0.009 | 14.575 82.959 |
expression | 11.5702 | 31.178 | 0.371 | 0.717 | -56.361 79.502 |
Omnibus: | 2.301 | Durbin-Watson: | 0.764 |
Prob(Omnibus): | 0.317 | Jarque-Bera (JB): | 1.749 |
Skew: | -0.772 | Prob(JB): | 0.417 |
Kurtosis: | 2.357 | Cond. No. | 514. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:52:58 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.016 |
Model: | OLS | Adj. R-squared: | -0.059 |
Method: | Least Squares | F-statistic: | 0.2175 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.649 |
Time: | 03:52:58 | Log-Likelihood: | -75.176 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -117.8020 | 453.572 | -0.260 | 0.799 | -1097.685 862.081 |
expression | 18.7156 | 40.133 | 0.466 | 0.649 | -67.985 105.417 |
Omnibus: | 0.230 | Durbin-Watson: | 1.577 |
Prob(Omnibus): | 0.891 | Jarque-Bera (JB): | 0.414 |
Skew: | 0.038 | Prob(JB): | 0.813 |
Kurtosis: | 2.190 | Cond. No. | 513. |