AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.059 | 0.810 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.676 |
Model: | OLS | Adj. R-squared: | 0.625 |
Method: | Least Squares | F-statistic: | 13.20 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.84e-05 |
Time: | 03:39:30 | Log-Likelihood: | -100.15 |
No. Observations: | 23 | AIC: | 208.3 |
Df Residuals: | 19 | BIC: | 212.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -12.3366 | 84.084 | -0.147 | 0.885 | -188.326 163.652 |
C(dose)[T.1] | 189.2953 | 110.630 | 1.711 | 0.103 | -42.256 420.847 |
expression | 11.0124 | 13.880 | 0.793 | 0.437 | -18.038 40.063 |
expression:C(dose)[T.1] | -22.0307 | 17.942 | -1.228 | 0.234 | -59.583 15.522 |
Omnibus: | 0.181 | Durbin-Watson: | 1.937 |
Prob(Omnibus): | 0.914 | Jarque-Bera (JB): | 0.041 |
Skew: | -0.075 | Prob(JB): | 0.980 |
Kurtosis: | 2.858 | Cond. No. | 220. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.75e-05 |
Time: | 03:39:30 | Log-Likelihood: | -101.03 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.3326 | 54.157 | 1.243 | 0.228 | -45.637 180.302 |
C(dose)[T.1] | 53.8955 | 9.051 | 5.954 | 0.000 | 35.015 72.776 |
expression | -2.1719 | 8.906 | -0.244 | 0.810 | -20.750 16.406 |
Omnibus: | 0.309 | Durbin-Watson: | 1.866 |
Prob(Omnibus): | 0.857 | Jarque-Bera (JB): | 0.477 |
Skew: | 0.050 | Prob(JB): | 0.788 |
Kurtosis: | 2.302 | Cond. No. | 78.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:39:31 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.030 |
Model: | OLS | Adj. R-squared: | -0.016 |
Method: | Least Squares | F-statistic: | 0.6447 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.431 |
Time: | 03:39:31 | Log-Likelihood: | -112.76 |
No. Observations: | 23 | AIC: | 229.5 |
Df Residuals: | 21 | BIC: | 231.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 10.3956 | 86.625 | 0.120 | 0.906 | -169.751 190.542 |
expression | 11.2432 | 14.002 | 0.803 | 0.431 | -17.876 40.362 |
Omnibus: | 1.845 | Durbin-Watson: | 2.427 |
Prob(Omnibus): | 0.398 | Jarque-Bera (JB): | 1.483 |
Skew: | 0.462 | Prob(JB): | 0.476 |
Kurtosis: | 2.167 | Cond. No. | 77.3 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.272 | 0.061 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.615 |
Model: | OLS | Adj. R-squared: | 0.510 |
Method: | Least Squares | F-statistic: | 5.860 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0121 |
Time: | 03:39:31 | Log-Likelihood: | -68.139 |
No. Observations: | 15 | AIC: | 144.3 |
Df Residuals: | 11 | BIC: | 147.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -20.9181 | 114.529 | -0.183 | 0.858 | -272.994 231.158 |
C(dose)[T.1] | -66.4953 | 152.403 | -0.436 | 0.671 | -401.932 268.941 |
expression | 13.3427 | 17.230 | 0.774 | 0.455 | -24.581 51.267 |
expression:C(dose)[T.1] | 18.2048 | 23.162 | 0.786 | 0.448 | -32.774 69.184 |
Omnibus: | 1.850 | Durbin-Watson: | 1.206 |
Prob(Omnibus): | 0.397 | Jarque-Bera (JB): | 1.377 |
Skew: | -0.692 | Prob(JB): | 0.502 |
Kurtosis: | 2.464 | Cond. No. | 203. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.593 |
Model: | OLS | Adj. R-squared: | 0.526 |
Method: | Least Squares | F-statistic: | 8.760 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00451 |
Time: | 03:39:31 | Log-Likelihood: | -68.549 |
No. Observations: | 15 | AIC: | 143.1 |
Df Residuals: | 12 | BIC: | 145.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -87.6266 | 75.665 | -1.158 | 0.269 | -252.486 77.233 |
C(dose)[T.1] | 52.7954 | 13.628 | 3.874 | 0.002 | 23.102 82.489 |
expression | 23.4175 | 11.330 | 2.067 | 0.061 | -1.268 48.103 |
Omnibus: | 1.816 | Durbin-Watson: | 1.070 |
Prob(Omnibus): | 0.403 | Jarque-Bera (JB): | 1.380 |
Skew: | -0.684 | Prob(JB): | 0.502 |
Kurtosis: | 2.421 | Cond. No. | 75.6 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:39:31 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.085 |
Model: | OLS | Adj. R-squared: | 0.015 |
Method: | Least Squares | F-statistic: | 1.209 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.291 |
Time: | 03:39:31 | Log-Likelihood: | -74.633 |
No. Observations: | 15 | AIC: | 153.3 |
Df Residuals: | 13 | BIC: | 154.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -22.7973 | 106.359 | -0.214 | 0.834 | -252.573 206.978 |
expression | 17.8097 | 16.196 | 1.100 | 0.291 | -17.181 52.800 |
Omnibus: | 0.460 | Durbin-Watson: | 2.105 |
Prob(Omnibus): | 0.795 | Jarque-Bera (JB): | 0.523 |
Skew: | 0.008 | Prob(JB): | 0.770 |
Kurtosis: | 2.085 | Cond. No. | 73.5 |