AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.717 | 0.205 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.705 |
Model: | OLS | Adj. R-squared: | 0.658 |
Method: | Least Squares | F-statistic: | 15.11 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.88e-05 |
Time: | 05:23:27 | Log-Likelihood: | -99.081 |
No. Observations: | 23 | AIC: | 206.2 |
Df Residuals: | 19 | BIC: | 210.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 356.8599 | 160.366 | 2.225 | 0.038 | 21.211 692.509 |
C(dose)[T.1] | -263.7111 | 231.181 | -1.141 | 0.268 | -747.578 220.156 |
expression | -31.7821 | 16.830 | -1.888 | 0.074 | -67.007 3.443 |
expression:C(dose)[T.1] | 33.3759 | 24.953 | 1.338 | 0.197 | -18.851 85.603 |
Omnibus: | 0.108 | Durbin-Watson: | 1.966 |
Prob(Omnibus): | 0.947 | Jarque-Bera (JB): | 0.307 |
Skew: | -0.108 | Prob(JB): | 0.858 |
Kurtosis: | 2.477 | Cond. No. | 670. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.677 |
Model: | OLS | Adj. R-squared: | 0.644 |
Method: | Least Squares | F-statistic: | 20.94 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.24e-05 |
Time: | 05:23:27 | Log-Likelihood: | -100.12 |
No. Observations: | 23 | AIC: | 206.2 |
Df Residuals: | 20 | BIC: | 209.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 212.2804 | 120.777 | 1.758 | 0.094 | -39.655 464.216 |
C(dose)[T.1] | 45.2037 | 10.458 | 4.323 | 0.000 | 23.390 67.018 |
expression | -16.5995 | 12.668 | -1.310 | 0.205 | -43.025 9.826 |
Omnibus: | 0.525 | Durbin-Watson: | 1.940 |
Prob(Omnibus): | 0.769 | Jarque-Bera (JB): | 0.608 |
Skew: | 0.136 | Prob(JB): | 0.738 |
Kurtosis: | 2.251 | Cond. No. | 271. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:23:27 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.375 |
Model: | OLS | Adj. R-squared: | 0.345 |
Method: | Least Squares | F-statistic: | 12.59 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00190 |
Time: | 05:23:27 | Log-Likelihood: | -107.70 |
No. Observations: | 23 | AIC: | 219.4 |
Df Residuals: | 21 | BIC: | 221.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 535.8056 | 128.654 | 4.165 | 0.000 | 268.254 803.357 |
expression | -49.1032 | 13.838 | -3.549 | 0.002 | -77.880 -20.326 |
Omnibus: | 1.580 | Durbin-Watson: | 1.808 |
Prob(Omnibus): | 0.454 | Jarque-Bera (JB): | 1.398 |
Skew: | 0.532 | Prob(JB): | 0.497 |
Kurtosis: | 2.428 | Cond. No. | 212. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.822 | 0.202 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.523 |
Model: | OLS | Adj. R-squared: | 0.393 |
Method: | Least Squares | F-statistic: | 4.023 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0371 |
Time: | 05:23:27 | Log-Likelihood: | -69.746 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 11 | BIC: | 150.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 478.4350 | 482.753 | 0.991 | 0.343 | -584.098 1540.968 |
C(dose)[T.1] | 195.9911 | 739.752 | 0.265 | 0.796 | -1432.191 1824.173 |
expression | -40.0466 | 47.025 | -0.852 | 0.413 | -143.547 63.454 |
expression:C(dose)[T.1] | -14.3254 | 72.080 | -0.199 | 0.846 | -172.972 144.321 |
Omnibus: | 0.461 | Durbin-Watson: | 0.809 |
Prob(Omnibus): | 0.794 | Jarque-Bera (JB): | 0.546 |
Skew: | -0.302 | Prob(JB): | 0.761 |
Kurtosis: | 2.286 | Cond. No. | 1.29e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.521 |
Model: | OLS | Adj. R-squared: | 0.442 |
Method: | Least Squares | F-statistic: | 6.538 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0120 |
Time: | 05:23:27 | Log-Likelihood: | -69.773 |
No. Observations: | 15 | AIC: | 145.5 |
Df Residuals: | 12 | BIC: | 147.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 541.0124 | 350.989 | 1.541 | 0.149 | -223.727 1305.752 |
C(dose)[T.1] | 49.0008 | 14.666 | 3.341 | 0.006 | 17.046 80.956 |
expression | -46.1438 | 34.183 | -1.350 | 0.202 | -120.622 28.334 |
Omnibus: | 0.478 | Durbin-Watson: | 0.833 |
Prob(Omnibus): | 0.788 | Jarque-Bera (JB): | 0.554 |
Skew: | -0.312 | Prob(JB): | 0.758 |
Kurtosis: | 2.294 | Cond. No. | 498. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:23:27 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.076 |
Model: | OLS | Adj. R-squared: | 0.005 |
Method: | Least Squares | F-statistic: | 1.073 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.319 |
Time: | 05:23:27 | Log-Likelihood: | -74.705 |
No. Observations: | 15 | AIC: | 153.4 |
Df Residuals: | 13 | BIC: | 154.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 578.7246 | 468.266 | 1.236 | 0.238 | -432.903 1590.352 |
expression | -47.2722 | 45.626 | -1.036 | 0.319 | -145.841 51.296 |
Omnibus: | 3.216 | Durbin-Watson: | 1.679 |
Prob(Omnibus): | 0.200 | Jarque-Bera (JB): | 1.337 |
Skew: | 0.313 | Prob(JB): | 0.513 |
Kurtosis: | 1.678 | Cond. No. | 497. |