AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.585 0.223 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.684
Model: OLS Adj. R-squared: 0.634
Method: Least Squares F-statistic: 13.69
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.43e-05
Time: 04:31:04 Log-Likelihood: -99.866
No. Observations: 23 AIC: 207.7
Df Residuals: 19 BIC: 212.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 68.8623 84.237 0.817 0.424 -107.447 245.172
C(dose)[T.1] 132.6874 106.944 1.241 0.230 -91.149 356.524
expression -4.6258 26.526 -0.174 0.863 -60.145 50.893
expression:C(dose)[T.1] -24.4409 33.392 -0.732 0.473 -94.331 45.449
Omnibus: 0.957 Durbin-Watson: 1.697
Prob(Omnibus): 0.620 Jarque-Bera (JB): 0.929
Skew: 0.342 Prob(JB): 0.628
Kurtosis: 2.291 Cond. No. 121.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.675
Model: OLS Adj. R-squared: 0.642
Method: Least Squares F-statistic: 20.75
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.32e-05
Time: 04:31:04 Log-Likelihood: -100.19
No. Observations: 23 AIC: 206.4
Df Residuals: 20 BIC: 209.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 117.7198 50.783 2.318 0.031 11.788 223.651
C(dose)[T.1] 54.6648 8.507 6.426 0.000 36.919 72.411
expression -20.0487 15.924 -1.259 0.223 -53.266 13.169
Omnibus: 0.773 Durbin-Watson: 1.511
Prob(Omnibus): 0.679 Jarque-Bera (JB): 0.781
Skew: 0.253 Prob(JB): 0.677
Kurtosis: 2.252 Cond. No. 42.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:31:04 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.044
Method: Least Squares F-statistic: 0.07443
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.788
Time: 04:31:04 Log-Likelihood: -113.06
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 103.2808 86.671 1.192 0.247 -76.961 283.522
expression -7.3646 26.995 -0.273 0.788 -63.503 48.774
Omnibus: 3.438 Durbin-Watson: 2.483
Prob(Omnibus): 0.179 Jarque-Bera (JB): 1.565
Skew: 0.270 Prob(JB): 0.457
Kurtosis: 1.841 Cond. No. 42.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.248 0.627 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.461
Model: OLS Adj. R-squared: 0.314
Method: Least Squares F-statistic: 3.134
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0695
Time: 04:31:04 Log-Likelihood: -70.667
No. Observations: 15 AIC: 149.3
Df Residuals: 11 BIC: 152.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 110.7512 94.565 1.171 0.266 -97.384 318.887
C(dose)[T.1] 26.0983 146.227 0.178 0.862 -295.744 347.941
expression -12.9083 27.953 -0.462 0.653 -74.433 48.617
expression:C(dose)[T.1] 6.2639 45.943 0.136 0.894 -94.856 107.384
Omnibus: 1.788 Durbin-Watson: 0.876
Prob(Omnibus): 0.409 Jarque-Bera (JB): 1.336
Skew: -0.680 Prob(JB): 0.513
Kurtosis: 2.461 Cond. No. 79.7

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.460
Model: OLS Adj. R-squared: 0.370
Method: Least Squares F-statistic: 5.110
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0248
Time: 04:31:04 Log-Likelihood: -70.679
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 102.9687 72.245 1.425 0.180 -54.440 260.377
C(dose)[T.1] 45.8887 16.935 2.710 0.019 8.990 82.788
expression -10.5895 21.257 -0.498 0.627 -56.905 35.726
Omnibus: 1.737 Durbin-Watson: 0.889
Prob(Omnibus): 0.420 Jarque-Bera (JB): 1.296
Skew: -0.669 Prob(JB): 0.523
Kurtosis: 2.469 Cond. No. 33.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:31:04 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.130
Model: OLS Adj. R-squared: 0.063
Method: Least Squares F-statistic: 1.934
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.188
Time: 04:31:04 Log-Likelihood: -74.260
No. Observations: 15 AIC: 152.5
Df Residuals: 13 BIC: 153.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 199.4752 76.670 2.602 0.022 33.840 365.111
expression -33.1731 23.853 -1.391 0.188 -84.705 18.358
Omnibus: 1.174 Durbin-Watson: 1.522
Prob(Omnibus): 0.556 Jarque-Bera (JB): 0.842
Skew: 0.254 Prob(JB): 0.656
Kurtosis: 1.956 Cond. No. 28.5