AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.042 | 0.839 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.596 |
Method: | Least Squares | F-statistic: | 11.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000134 |
Time: | 03:43:07 | Log-Likelihood: | -100.98 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 27.7533 | 74.104 | 0.375 | 0.712 | -127.349 182.855 |
C(dose)[T.1] | 82.7763 | 95.858 | 0.864 | 0.399 | -117.857 283.410 |
expression | 4.0181 | 11.216 | 0.358 | 0.724 | -19.457 27.493 |
expression:C(dose)[T.1] | -4.5089 | 14.989 | -0.301 | 0.767 | -35.882 26.864 |
Omnibus: | 0.240 | Durbin-Watson: | 1.847 |
Prob(Omnibus): | 0.887 | Jarque-Bera (JB): | 0.433 |
Skew: | 0.009 | Prob(JB): | 0.805 |
Kurtosis: | 2.328 | Cond. No. | 186. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.55 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.77e-05 |
Time: | 03:43:07 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 44.3738 | 48.246 | 0.920 | 0.369 | -56.265 145.012 |
C(dose)[T.1] | 54.0904 | 9.497 | 5.696 | 0.000 | 34.281 73.900 |
expression | 1.4937 | 7.270 | 0.205 | 0.839 | -13.671 16.658 |
Omnibus: | 0.584 | Durbin-Watson: | 1.900 |
Prob(Omnibus): | 0.747 | Jarque-Bera (JB): | 0.629 |
Skew: | 0.107 | Prob(JB): | 0.730 |
Kurtosis: | 2.218 | Cond. No. | 72.4 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:43:07 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.082 |
Model: | OLS | Adj. R-squared: | 0.038 |
Method: | Least Squares | F-statistic: | 1.869 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.186 |
Time: | 03:43:07 | Log-Likelihood: | -112.12 |
No. Observations: | 23 | AIC: | 228.2 |
Df Residuals: | 21 | BIC: | 230.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 171.6241 | 67.573 | 2.540 | 0.019 | 31.098 312.150 |
expression | -14.4898 | 10.597 | -1.367 | 0.186 | -36.529 7.549 |
Omnibus: | 4.697 | Durbin-Watson: | 2.390 |
Prob(Omnibus): | 0.096 | Jarque-Bera (JB): | 1.580 |
Skew: | 0.076 | Prob(JB): | 0.454 |
Kurtosis: | 1.725 | Cond. No. | 63.8 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.103 | 0.754 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.609 |
Model: | OLS | Adj. R-squared: | 0.502 |
Method: | Least Squares | F-statistic: | 5.708 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0132 |
Time: | 03:43:07 | Log-Likelihood: | -68.260 |
No. Observations: | 15 | AIC: | 144.5 |
Df Residuals: | 11 | BIC: | 147.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 105.5703 | 28.072 | 3.761 | 0.003 | 43.785 167.356 |
C(dose)[T.1] | -72.8008 | 61.889 | -1.176 | 0.264 | -209.019 63.417 |
expression | -9.2989 | 6.384 | -1.457 | 0.173 | -23.351 4.753 |
expression:C(dose)[T.1] | 24.1931 | 11.572 | 2.091 | 0.061 | -1.277 49.663 |
Omnibus: | 0.395 | Durbin-Watson: | 1.848 |
Prob(Omnibus): | 0.821 | Jarque-Bera (JB): | 0.142 |
Skew: | -0.216 | Prob(JB): | 0.931 |
Kurtosis: | 2.797 | Cond. No. | 59.9 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.453 |
Model: | OLS | Adj. R-squared: | 0.362 |
Method: | Least Squares | F-statistic: | 4.978 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0266 |
Time: | 03:43:07 | Log-Likelihood: | -70.769 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 75.3664 | 27.240 | 2.767 | 0.017 | 16.015 134.717 |
C(dose)[T.1] | 52.1542 | 18.179 | 2.869 | 0.014 | 12.546 91.762 |
expression | -1.9352 | 6.026 | -0.321 | 0.754 | -15.066 11.195 |
Omnibus: | 2.938 | Durbin-Watson: | 0.880 |
Prob(Omnibus): | 0.230 | Jarque-Bera (JB): | 1.948 |
Skew: | -0.871 | Prob(JB): | 0.378 |
Kurtosis: | 2.707 | Cond. No. | 19.0 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:43:07 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.079 |
Model: | OLS | Adj. R-squared: | 0.008 |
Method: | Least Squares | F-statistic: | 1.109 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.312 |
Time: | 03:43:08 | Log-Likelihood: | -74.686 |
No. Observations: | 15 | AIC: | 153.4 |
Df Residuals: | 13 | BIC: | 154.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 60.1090 | 33.328 | 1.804 | 0.095 | -11.892 132.110 |
expression | 6.8250 | 6.482 | 1.053 | 0.312 | -7.177 20.827 |
Omnibus: | 1.399 | Durbin-Watson: | 1.422 |
Prob(Omnibus): | 0.497 | Jarque-Bera (JB): | 0.592 |
Skew: | -0.487 | Prob(JB): | 0.744 |
Kurtosis: | 2.983 | Cond. No. | 18.2 |