AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.091 0.766 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.599
Method: Least Squares F-statistic: 11.94
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000127
Time: 04:14:13 Log-Likelihood: -100.92
No. Observations: 23 AIC: 209.8
Df Residuals: 19 BIC: 214.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 28.8561 54.847 0.526 0.605 -85.941 143.653
C(dose)[T.1] 88.6620 88.658 1.000 0.330 -96.901 274.225
expression 4.3209 9.288 0.465 0.647 -15.120 23.762
expression:C(dose)[T.1] -6.1951 16.005 -0.387 0.703 -39.695 27.304
Omnibus: 0.202 Durbin-Watson: 1.971
Prob(Omnibus): 0.904 Jarque-Bera (JB): 0.407
Skew: 0.009 Prob(JB): 0.816
Kurtosis: 2.348 Cond. No. 139.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.62
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.71e-05
Time: 04:14:13 Log-Likelihood: -101.01
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 41.0976 43.848 0.937 0.360 -50.368 132.563
C(dose)[T.1] 54.5579 9.639 5.660 0.000 34.451 74.665
expression 2.2345 7.402 0.302 0.766 -13.205 17.674
Omnibus: 0.486 Durbin-Watson: 1.985
Prob(Omnibus): 0.784 Jarque-Bera (JB): 0.574
Skew: 0.063 Prob(JB): 0.751
Kurtosis: 2.237 Cond. No. 58.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:14:13 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.091
Model: OLS Adj. R-squared: 0.048
Method: Least Squares F-statistic: 2.104
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.162
Time: 04:14:13 Log-Likelihood: -112.01
No. Observations: 23 AIC: 228.0
Df Residuals: 21 BIC: 230.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 165.7196 59.689 2.776 0.011 41.589 289.851
expression -15.3410 10.576 -1.450 0.162 -37.336 6.654
Omnibus: 2.110 Durbin-Watson: 1.960
Prob(Omnibus): 0.348 Jarque-Bera (JB): 1.110
Skew: 0.089 Prob(JB): 0.574
Kurtosis: 1.939 Cond. No. 50.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.221 0.647 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.502
Model: OLS Adj. R-squared: 0.366
Method: Least Squares F-statistic: 3.695
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0464
Time: 04:14:13 Log-Likelihood: -70.072
No. Observations: 15 AIC: 148.1
Df Residuals: 11 BIC: 151.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -128.3083 181.374 -0.707 0.494 -527.511 270.894
C(dose)[T.1] 250.8321 200.804 1.249 0.238 -191.135 692.799
expression 29.3439 27.137 1.081 0.303 -30.384 89.072
expression:C(dose)[T.1] -30.3955 31.125 -0.977 0.350 -98.901 38.110
Omnibus: 2.720 Durbin-Watson: 1.154
Prob(Omnibus): 0.257 Jarque-Bera (JB): 1.704
Skew: -0.819 Prob(JB): 0.426
Kurtosis: 2.787 Cond. No. 239.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.459
Model: OLS Adj. R-squared: 0.369
Method: Least Squares F-statistic: 5.085
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0251
Time: 04:14:13 Log-Likelihood: -70.696
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 25.8132 89.210 0.289 0.777 -168.558 220.185
C(dose)[T.1] 55.8148 21.006 2.657 0.021 10.046 101.583
expression 6.2388 13.264 0.470 0.647 -22.662 35.139
Omnibus: 3.030 Durbin-Watson: 0.778
Prob(Omnibus): 0.220 Jarque-Bera (JB): 2.135
Skew: -0.900 Prob(JB): 0.344
Kurtosis: 2.583 Cond. No. 73.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:14:13 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.140
Model: OLS Adj. R-squared: 0.074
Method: Least Squares F-statistic: 2.122
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.169
Time: 04:14:13 Log-Likelihood: -74.166
No. Observations: 15 AIC: 152.3
Df Residuals: 13 BIC: 153.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 199.7085 73.405 2.721 0.017 41.126 358.291
expression -17.3707 11.925 -1.457 0.169 -43.133 8.392
Omnibus: 0.377 Durbin-Watson: 1.358
Prob(Omnibus): 0.828 Jarque-Bera (JB): 0.018
Skew: 0.074 Prob(JB): 0.991
Kurtosis: 2.915 Cond. No. 49.2