AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.173 | 0.682 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.597 |
Method: | Least Squares | F-statistic: | 11.88 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000131 |
Time: | 04:25:33 | Log-Likelihood: | -100.96 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 13.7841 | 174.071 | 0.079 | 0.938 | -350.552 378.120 |
C(dose)[T.1] | 27.4568 | 259.648 | 0.106 | 0.917 | -515.993 570.906 |
expression | 4.3721 | 18.815 | 0.232 | 0.819 | -35.008 43.752 |
expression:C(dose)[T.1] | 2.5123 | 27.454 | 0.092 | 0.928 | -54.949 59.973 |
Omnibus: | 0.403 | Durbin-Watson: | 1.879 |
Prob(Omnibus): | 0.818 | Jarque-Bera (JB): | 0.540 |
Skew: | 0.130 | Prob(JB): | 0.763 |
Kurtosis: | 2.296 | Cond. No. | 708. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 18.74 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.60e-05 |
Time: | 04:25:33 | Log-Likelihood: | -100.96 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 20 | BIC: | 211.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 2.8739 | 123.650 | 0.023 | 0.982 | -255.055 260.803 |
C(dose)[T.1] | 51.1985 | 10.135 | 5.052 | 0.000 | 30.057 72.340 |
expression | 5.5522 | 13.358 | 0.416 | 0.682 | -22.311 33.416 |
Omnibus: | 0.370 | Durbin-Watson: | 1.852 |
Prob(Omnibus): | 0.831 | Jarque-Bera (JB): | 0.520 |
Skew: | 0.127 | Prob(JB): | 0.771 |
Kurtosis: | 2.308 | Cond. No. | 271. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:25:33 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.208 |
Model: | OLS | Adj. R-squared: | 0.170 |
Method: | Least Squares | F-statistic: | 5.520 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0287 |
Time: | 04:25:33 | Log-Likelihood: | -110.42 |
No. Observations: | 23 | AIC: | 224.8 |
Df Residuals: | 21 | BIC: | 227.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -295.6572 | 159.905 | -1.849 | 0.079 | -628.197 36.883 |
expression | 39.8061 | 16.943 | 2.349 | 0.029 | 4.571 75.041 |
Omnibus: | 1.603 | Durbin-Watson: | 2.366 |
Prob(Omnibus): | 0.449 | Jarque-Bera (JB): | 1.243 |
Skew: | 0.365 | Prob(JB): | 0.537 |
Kurtosis: | 2.125 | Cond. No. | 238. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.345 | 0.059 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.596 |
Model: | OLS | Adj. R-squared: | 0.486 |
Method: | Least Squares | F-statistic: | 5.410 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0156 |
Time: | 04:25:33 | Log-Likelihood: | -68.502 |
No. Observations: | 15 | AIC: | 145.0 |
Df Residuals: | 11 | BIC: | 147.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 356.3069 | 343.862 | 1.036 | 0.322 | -400.529 1113.142 |
C(dose)[T.1] | 108.5865 | 393.762 | 0.276 | 0.788 | -758.077 975.250 |
expression | -34.6424 | 41.218 | -0.840 | 0.419 | -125.362 56.077 |
expression:C(dose)[T.1] | -6.6344 | 47.060 | -0.141 | 0.890 | -110.212 96.943 |
Omnibus: | 0.251 | Durbin-Watson: | 0.927 |
Prob(Omnibus): | 0.882 | Jarque-Bera (JB): | 0.022 |
Skew: | -0.042 | Prob(JB): | 0.989 |
Kurtosis: | 2.830 | Cond. No. | 715. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.595 |
Model: | OLS | Adj. R-squared: | 0.528 |
Method: | Least Squares | F-statistic: | 8.826 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00439 |
Time: | 04:25:33 | Log-Likelihood: | -68.515 |
No. Observations: | 15 | AIC: | 143.0 |
Df Residuals: | 12 | BIC: | 145.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 398.7470 | 159.251 | 2.504 | 0.028 | 51.769 745.725 |
C(dose)[T.1] | 53.1107 | 13.616 | 3.900 | 0.002 | 23.443 82.778 |
expression | -39.7318 | 19.061 | -2.084 | 0.059 | -81.262 1.798 |
Omnibus: | 0.222 | Durbin-Watson: | 0.918 |
Prob(Omnibus): | 0.895 | Jarque-Bera (JB): | 0.025 |
Skew: | -0.031 | Prob(JB): | 0.987 |
Kurtosis: | 2.808 | Cond. No. | 202. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:25:33 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.082 |
Model: | OLS | Adj. R-squared: | 0.012 |
Method: | Least Squares | F-statistic: | 1.165 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.300 |
Time: | 04:25:33 | Log-Likelihood: | -74.657 |
No. Observations: | 15 | AIC: | 153.3 |
Df Residuals: | 13 | BIC: | 154.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 341.0342 | 229.415 | 1.487 | 0.161 | -154.587 836.656 |
expression | -29.4786 | 27.315 | -1.079 | 0.300 | -88.488 29.531 |
Omnibus: | 0.539 | Durbin-Watson: | 1.774 |
Prob(Omnibus): | 0.764 | Jarque-Bera (JB): | 0.579 |
Skew: | 0.173 | Prob(JB): | 0.748 |
Kurtosis: | 2.102 | Cond. No. | 201. |