AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.743 0.202 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.678
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 13.36
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.35e-05
Time: 04:42:58 Log-Likelihood: -100.06
No. Observations: 23 AIC: 208.1
Df Residuals: 19 BIC: 212.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 89.9870 53.058 1.696 0.106 -21.065 201.039
C(dose)[T.1] 69.6458 70.633 0.986 0.337 -78.190 217.482
expression -6.3077 9.295 -0.679 0.506 -25.762 13.147
expression:C(dose)[T.1] -3.3257 12.627 -0.263 0.795 -29.753 23.102
Omnibus: 0.034 Durbin-Watson: 2.080
Prob(Omnibus): 0.983 Jarque-Bera (JB): 0.247
Skew: -0.024 Prob(JB): 0.884
Kurtosis: 2.495 Cond. No. 125.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.677
Model: OLS Adj. R-squared: 0.645
Method: Least Squares F-statistic: 20.98
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.23e-05
Time: 04:42:58 Log-Likelihood: -100.10
No. Observations: 23 AIC: 206.2
Df Residuals: 20 BIC: 209.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 100.2095 35.326 2.837 0.010 26.521 173.898
C(dose)[T.1] 51.1859 8.567 5.975 0.000 33.315 69.057
expression -8.1099 6.143 -1.320 0.202 -20.924 4.704
Omnibus: 0.086 Durbin-Watson: 2.056
Prob(Omnibus): 0.958 Jarque-Bera (JB): 0.311
Skew: -0.014 Prob(JB): 0.856
Kurtosis: 2.431 Cond. No. 48.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:42:58 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.101
Model: OLS Adj. R-squared: 0.058
Method: Least Squares F-statistic: 2.361
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.139
Time: 04:42:58 Log-Likelihood: -111.88
No. Observations: 23 AIC: 227.8
Df Residuals: 21 BIC: 230.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 163.3970 54.891 2.977 0.007 49.245 277.549
expression -15.0901 9.821 -1.536 0.139 -35.515 5.335
Omnibus: 3.187 Durbin-Watson: 2.545
Prob(Omnibus): 0.203 Jarque-Bera (JB): 1.405
Skew: 0.180 Prob(JB): 0.495
Kurtosis: 1.844 Cond. No. 46.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.341 0.039 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.711
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 9.008
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00267
Time: 04:42:58 Log-Likelihood: -65.998
No. Observations: 15 AIC: 140.0
Df Residuals: 11 BIC: 142.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 137.3190 62.433 2.199 0.050 -0.094 274.732
C(dose)[T.1] 268.9596 116.740 2.304 0.042 12.017 525.902
expression -11.3035 9.999 -1.130 0.282 -33.311 10.704
expression:C(dose)[T.1] -34.7086 18.543 -1.872 0.088 -75.521 6.104
Omnibus: 0.879 Durbin-Watson: 0.622
Prob(Omnibus): 0.644 Jarque-Bera (JB): 0.816
Skew: -0.402 Prob(JB): 0.665
Kurtosis: 2.189 Cond. No. 155.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.619
Model: OLS Adj. R-squared: 0.555
Method: Least Squares F-statistic: 9.730
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00308
Time: 04:42:58 Log-Likelihood: -68.072
No. Observations: 15 AIC: 142.1
Df Residuals: 12 BIC: 144.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 199.7191 58.033 3.441 0.005 73.276 326.162
C(dose)[T.1] 51.5941 13.134 3.928 0.002 22.977 80.211
expression -21.3955 9.257 -2.311 0.039 -41.566 -1.225
Omnibus: 4.899 Durbin-Watson: 1.190
Prob(Omnibus): 0.086 Jarque-Bera (JB): 1.738
Skew: -0.423 Prob(JB): 0.419
Kurtosis: 1.563 Cond. No. 57.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:42:58 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.128
Model: OLS Adj. R-squared: 0.061
Method: Least Squares F-statistic: 1.909
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.190
Time: 04:42:58 Log-Likelihood: -74.272
No. Observations: 15 AIC: 152.5
Df Residuals: 13 BIC: 154.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 209.3035 84.225 2.485 0.027 27.346 391.261
expression -18.5230 13.406 -1.382 0.190 -47.484 10.438
Omnibus: 1.635 Durbin-Watson: 2.304
Prob(Omnibus): 0.442 Jarque-Bera (JB): 0.871
Skew: 0.049 Prob(JB): 0.647
Kurtosis: 1.824 Cond. No. 57.2