AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.398 0.535 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.605
Method: Least Squares F-statistic: 12.23
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000110
Time: 04:57:12 Log-Likelihood: -100.74
No. Observations: 23 AIC: 209.5
Df Residuals: 19 BIC: 214.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 75.1911 59.236 1.269 0.220 -48.791 199.173
C(dose)[T.1] 95.9978 115.101 0.834 0.415 -144.911 336.907
expression -3.9232 11.016 -0.356 0.726 -26.980 19.133
expression:C(dose)[T.1] -9.4793 23.483 -0.404 0.691 -58.629 39.671
Omnibus: 0.456 Durbin-Watson: 1.964
Prob(Omnibus): 0.796 Jarque-Bera (JB): 0.574
Skew: 0.149 Prob(JB): 0.751
Kurtosis: 2.286 Cond. No. 158.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.06
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.33e-05
Time: 04:57:12 Log-Likelihood: -100.84
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 86.3479 51.285 1.684 0.108 -20.630 193.325
C(dose)[T.1] 49.7331 10.394 4.785 0.000 28.052 71.414
expression -6.0092 9.523 -0.631 0.535 -25.873 13.855
Omnibus: 0.471 Durbin-Watson: 1.983
Prob(Omnibus): 0.790 Jarque-Bera (JB): 0.576
Skew: 0.119 Prob(JB): 0.750
Kurtosis: 2.262 Cond. No. 63.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:57:12 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.262
Model: OLS Adj. R-squared: 0.227
Method: Least Squares F-statistic: 7.455
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0125
Time: 04:57:12 Log-Likelihood: -109.61
No. Observations: 23 AIC: 223.2
Df Residuals: 21 BIC: 225.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 236.8672 57.889 4.092 0.001 116.480 357.254
expression -31.0478 11.371 -2.730 0.013 -54.696 -7.400
Omnibus: 0.883 Durbin-Watson: 2.525
Prob(Omnibus): 0.643 Jarque-Bera (JB): 0.744
Skew: 0.075 Prob(JB): 0.689
Kurtosis: 2.132 Cond. No. 49.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.269 0.613 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.551
Model: OLS Adj. R-squared: 0.429
Method: Least Squares F-statistic: 4.502
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0271
Time: 04:57:12 Log-Likelihood: -69.292
No. Observations: 15 AIC: 146.6
Df Residuals: 11 BIC: 149.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 150.2643 153.231 0.981 0.348 -186.994 487.523
C(dose)[T.1] -299.1960 235.406 -1.271 0.230 -817.322 218.930
expression -17.6628 32.591 -0.542 0.599 -89.396 54.070
expression:C(dose)[T.1] 75.2608 50.594 1.488 0.165 -36.096 186.618
Omnibus: 0.654 Durbin-Watson: 0.827
Prob(Omnibus): 0.721 Jarque-Bera (JB): 0.640
Skew: -0.212 Prob(JB): 0.726
Kurtosis: 2.082 Cond. No. 198.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.461
Model: OLS Adj. R-squared: 0.371
Method: Least Squares F-statistic: 5.129
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0246
Time: 04:57:12 Log-Likelihood: -70.667
No. Observations: 15 AIC: 147.3
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 3.8014 123.201 0.031 0.976 -264.631 272.234
C(dose)[T.1] 50.2725 15.704 3.201 0.008 16.057 84.488
expression 13.5670 26.158 0.519 0.613 -43.426 70.560
Omnibus: 1.655 Durbin-Watson: 0.804
Prob(Omnibus): 0.437 Jarque-Bera (JB): 1.316
Skew: -0.638 Prob(JB): 0.518
Kurtosis: 2.311 Cond. No. 77.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:57:12 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.076
Method: Least Squares F-statistic: 0.005447
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.942
Time: 04:57:12 Log-Likelihood: -75.297
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 82.0323 157.971 0.519 0.612 -259.243 423.307
expression 2.5033 33.920 0.074 0.942 -70.776 75.783
Omnibus: 0.550 Durbin-Watson: 1.622
Prob(Omnibus): 0.760 Jarque-Bera (JB): 0.561
Skew: 0.041 Prob(JB): 0.756
Kurtosis: 2.056 Cond. No. 75.7