AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.298 | 0.268 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.676 |
Model: | OLS | Adj. R-squared: | 0.625 |
Method: | Least Squares | F-statistic: | 13.23 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 6.74e-05 |
Time: | 17:29:56 | Log-Likelihood: | -100.13 |
No. Observations: | 23 | AIC: | 208.3 |
Df Residuals: | 19 | BIC: | 212.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 82.7365 | 89.369 | 0.926 | 0.366 | -104.315 269.788 |
C(dose)[T.1] | 127.0774 | 122.475 | 1.038 | 0.312 | -129.266 383.421 |
expression | -9.0728 | 28.359 | -0.320 | 0.753 | -68.428 50.282 |
expression:C(dose)[T.1] | -22.5674 | 38.364 | -0.588 | 0.563 | -102.864 57.729 |
Omnibus: | 0.172 | Durbin-Watson: | 1.852 |
Prob(Omnibus): | 0.918 | Jarque-Bera (JB): | 0.279 |
Skew: | -0.176 | Prob(JB): | 0.870 |
Kurtosis: | 2.590 | Cond. No. | 132. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.670 |
Model: | OLS | Adj. R-squared: | 0.637 |
Method: | Least Squares | F-statistic: | 20.34 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 1.51e-05 |
Time: | 17:29:56 | Log-Likelihood: | -100.34 |
No. Observations: | 23 | AIC: | 206.7 |
Df Residuals: | 20 | BIC: | 210.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 121.5100 | 59.356 | 2.047 | 0.054 | -2.304 245.324 |
C(dose)[T.1] | 55.2180 | 8.657 | 6.378 | 0.000 | 37.159 73.277 |
expression | -21.4040 | 18.784 | -1.139 | 0.268 | -60.587 17.779 |
Omnibus: | 0.257 | Durbin-Watson: | 1.956 |
Prob(Omnibus): | 0.879 | Jarque-Bera (JB): | 0.436 |
Skew: | -0.162 | Prob(JB): | 0.804 |
Kurtosis: | 2.409 | Cond. No. | 49.6 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 17:29:57 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.048 |
Method: | Least Squares | F-statistic: | 0.002113 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.964 |
Time: | 17:29:57 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 75.1264 | 100.139 | 0.750 | 0.461 | -133.124 283.377 |
expression | 1.4408 | 31.346 | 0.046 | 0.964 | -63.746 66.627 |
Omnibus: | 3.220 | Durbin-Watson: | 2.481 |
Prob(Omnibus): | 0.200 | Jarque-Bera (JB): | 1.563 |
Skew: | 0.296 | Prob(JB): | 0.458 |
Kurtosis: | 1.868 | Cond. No. | 48.7 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.504 | 0.140 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.546 |
Model: | OLS | Adj. R-squared: | 0.422 |
Method: | Least Squares | F-statistic: | 4.408 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0288 |
Time: | 17:29:57 | Log-Likelihood: | -69.379 |
No. Observations: | 15 | AIC: | 146.8 |
Df Residuals: | 11 | BIC: | 149.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -16.3801 | 74.017 | -0.221 | 0.829 | -179.291 146.530 |
C(dose)[T.1] | 23.0849 | 131.042 | 0.176 | 0.863 | -265.337 311.507 |
expression | 22.6043 | 19.746 | 1.145 | 0.277 | -20.856 66.065 |
expression:C(dose)[T.1] | 7.8234 | 35.749 | 0.219 | 0.831 | -70.859 86.506 |
Omnibus: | 1.166 | Durbin-Watson: | 0.914 |
Prob(Omnibus): | 0.558 | Jarque-Bera (JB): | 0.974 |
Skew: | -0.535 | Prob(JB): | 0.614 |
Kurtosis: | 2.356 | Cond. No. | 85.2 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.544 |
Model: | OLS | Adj. R-squared: | 0.468 |
Method: | Least Squares | F-statistic: | 7.156 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00900 |
Time: | 17:29:57 | Log-Likelihood: | -69.412 |
No. Observations: | 15 | AIC: | 144.8 |
Df Residuals: | 12 | BIC: | 146.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -25.2297 | 59.484 | -0.424 | 0.679 | -154.835 104.375 |
C(dose)[T.1] | 51.5741 | 14.395 | 3.583 | 0.004 | 20.209 82.939 |
expression | 24.9911 | 15.794 | 1.582 | 0.140 | -9.421 59.403 |
Omnibus: | 1.258 | Durbin-Watson: | 0.923 |
Prob(Omnibus): | 0.533 | Jarque-Bera (JB): | 1.042 |
Skew: | -0.554 | Prob(JB): | 0.594 |
Kurtosis: | 2.337 | Cond. No. | 33.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 17:29:57 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.056 |
Model: | OLS | Adj. R-squared: | -0.017 |
Method: | Least Squares | F-statistic: | 0.7727 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.395 |
Time: | 17:29:57 | Log-Likelihood: | -74.867 |
No. Observations: | 15 | AIC: | 153.7 |
Df Residuals: | 13 | BIC: | 155.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 23.8762 | 80.006 | 0.298 | 0.770 | -148.966 196.718 |
expression | 19.0846 | 21.711 | 0.879 | 0.395 | -27.819 65.988 |
Omnibus: | 2.015 | Durbin-Watson: | 1.737 |
Prob(Omnibus): | 0.365 | Jarque-Bera (JB): | 1.061 |
Skew: | 0.263 | Prob(JB): | 0.588 |
Kurtosis: | 1.808 | Cond. No. | 32.0 |