AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.784 | 0.111 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.694 |
Model: | OLS | Adj. R-squared: | 0.646 |
Method: | Least Squares | F-statistic: | 14.37 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.98e-05 |
Time: | 22:44:36 | Log-Likelihood: | -99.482 |
No. Observations: | 23 | AIC: | 207.0 |
Df Residuals: | 19 | BIC: | 211.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 184.1365 | 91.421 | 2.014 | 0.058 | -7.210 375.483 |
C(dose)[T.1] | 5.1382 | 130.591 | 0.039 | 0.969 | -268.191 278.468 |
expression | -18.3656 | 12.896 | -1.424 | 0.171 | -45.358 8.627 |
expression:C(dose)[T.1] | 6.7997 | 18.432 | 0.369 | 0.716 | -31.779 45.378 |
Omnibus: | 0.911 | Durbin-Watson: | 2.051 |
Prob(Omnibus): | 0.634 | Jarque-Bera (JB): | 0.861 |
Skew: | 0.272 | Prob(JB): | 0.650 |
Kurtosis: | 2.223 | Cond. No. | 290. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.692 |
Model: | OLS | Adj. R-squared: | 0.661 |
Method: | Least Squares | F-statistic: | 22.46 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 7.70e-06 |
Time: | 22:44:37 | Log-Likelihood: | -99.564 |
No. Observations: | 23 | AIC: | 205.1 |
Df Residuals: | 20 | BIC: | 208.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 160.5868 | 64.014 | 2.509 | 0.021 | 27.057 294.117 |
C(dose)[T.1] | 53.2145 | 8.217 | 6.476 | 0.000 | 36.074 70.355 |
expression | -15.0368 | 9.013 | -1.668 | 0.111 | -33.837 3.763 |
Omnibus: | 1.199 | Durbin-Watson: | 2.059 |
Prob(Omnibus): | 0.549 | Jarque-Bera (JB): | 1.074 |
Skew: | 0.364 | Prob(JB): | 0.585 |
Kurtosis: | 2.232 | Cond. No. | 113. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:44:37 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.046 |
Model: | OLS | Adj. R-squared: | 0.000 |
Method: | Least Squares | F-statistic: | 1.010 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.326 |
Time: | 22:44:37 | Log-Likelihood: | -112.56 |
No. Observations: | 23 | AIC: | 229.1 |
Df Residuals: | 21 | BIC: | 231.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 189.7288 | 109.666 | 1.730 | 0.098 | -38.335 417.793 |
expression | -15.5589 | 15.478 | -1.005 | 0.326 | -47.747 16.629 |
Omnibus: | 1.915 | Durbin-Watson: | 2.650 |
Prob(Omnibus): | 0.384 | Jarque-Bera (JB): | 1.430 |
Skew: | 0.414 | Prob(JB): | 0.489 |
Kurtosis: | 2.102 | Cond. No. | 112. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.635 | 0.225 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.557 |
Model: | OLS | Adj. R-squared: | 0.437 |
Method: | Least Squares | F-statistic: | 4.617 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0252 |
Time: | 22:44:37 | Log-Likelihood: | -69.187 |
No. Observations: | 15 | AIC: | 146.4 |
Df Residuals: | 11 | BIC: | 149.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -4.2457 | 315.694 | -0.013 | 0.990 | -699.084 690.593 |
C(dose)[T.1] | 403.8740 | 360.576 | 1.120 | 0.287 | -389.748 1197.496 |
expression | 8.7781 | 38.641 | 0.227 | 0.824 | -76.271 93.827 |
expression:C(dose)[T.1] | -46.2280 | 44.976 | -1.028 | 0.326 | -145.220 52.764 |
Omnibus: | 1.576 | Durbin-Watson: | 0.913 |
Prob(Omnibus): | 0.455 | Jarque-Bera (JB): | 1.269 |
Skew: | -0.585 | Prob(JB): | 0.530 |
Kurtosis: | 2.187 | Cond. No. | 576. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.515 |
Model: | OLS | Adj. R-squared: | 0.434 |
Method: | Least Squares | F-statistic: | 6.368 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0130 |
Time: | 22:44:37 | Log-Likelihood: | -69.875 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 12 | BIC: | 147.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 274.3678 | 162.195 | 1.692 | 0.117 | -79.024 627.760 |
C(dose)[T.1] | 33.7799 | 19.063 | 1.772 | 0.102 | -7.754 75.314 |
expression | -25.3443 | 19.820 | -1.279 | 0.225 | -68.529 17.841 |
Omnibus: | 1.956 | Durbin-Watson: | 0.770 |
Prob(Omnibus): | 0.376 | Jarque-Bera (JB): | 1.088 |
Skew: | -0.307 | Prob(JB): | 0.580 |
Kurtosis: | 1.832 | Cond. No. | 177. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:44:37 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.388 |
Model: | OLS | Adj. R-squared: | 0.341 |
Method: | Least Squares | F-statistic: | 8.239 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0131 |
Time: | 22:44:37 | Log-Likelihood: | -71.618 |
No. Observations: | 15 | AIC: | 147.2 |
Df Residuals: | 13 | BIC: | 148.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 466.5547 | 130.150 | 3.585 | 0.003 | 185.383 747.727 |
expression | -47.5579 | 16.568 | -2.870 | 0.013 | -83.352 -11.764 |
Omnibus: | 2.210 | Durbin-Watson: | 1.100 |
Prob(Omnibus): | 0.331 | Jarque-Bera (JB): | 0.987 |
Skew: | 0.030 | Prob(JB): | 0.611 |
Kurtosis: | 1.745 | Cond. No. | 131. |