AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.418 0.525 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.603
Method: Least Squares F-statistic: 12.16
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.000114
Time: 22:44:45 Log-Likelihood: -100.78
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -57.4617 164.707 -0.349 0.731 -402.198 287.275
C(dose)[T.1] 137.0766 326.084 0.420 0.679 -545.424 819.577
expression 13.7785 20.308 0.678 0.506 -28.727 56.284
expression:C(dose)[T.1] -10.4534 39.170 -0.267 0.792 -92.438 71.531
Omnibus: 0.728 Durbin-Watson: 2.072
Prob(Omnibus): 0.695 Jarque-Bera (JB): 0.689
Skew: -0.094 Prob(JB): 0.709
Kurtosis: 2.173 Cond. No. 729.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.09
Date: Mon, 27 Jan 2025 Prob (F-statistic): 2.30e-05
Time: 22:44:45 Log-Likelihood: -100.82
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -34.6881 137.567 -0.252 0.803 -321.648 252.272
C(dose)[T.1] 50.0973 10.021 4.999 0.000 29.194 71.001
expression 10.9686 16.958 0.647 0.525 -24.405 46.342
Omnibus: 0.497 Durbin-Watson: 2.057
Prob(Omnibus): 0.780 Jarque-Bera (JB): 0.576
Skew: -0.035 Prob(JB): 0.750
Kurtosis: 2.228 Cond. No. 266.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 22:44:45 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.227
Model: OLS Adj. R-squared: 0.190
Method: Least Squares F-statistic: 6.156
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0216
Time: 22:44:45 Log-Likelihood: -110.15
No. Observations: 23 AIC: 224.3
Df Residuals: 21 BIC: 226.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -360.1303 177.387 -2.030 0.055 -729.026 8.765
expression 53.3412 21.498 2.481 0.022 8.633 98.049
Omnibus: 0.414 Durbin-Watson: 2.869
Prob(Omnibus): 0.813 Jarque-Bera (JB): 0.543
Skew: 0.239 Prob(JB): 0.762
Kurtosis: 2.419 Cond. No. 234.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.417 0.257 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.510
Model: OLS Adj. R-squared: 0.376
Method: Least Squares F-statistic: 3.817
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0426
Time: 22:44:45 Log-Likelihood: -69.949
No. Observations: 15 AIC: 147.9
Df Residuals: 11 BIC: 150.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -175.0566 238.863 -0.733 0.479 -700.791 350.678
C(dose)[T.1] 134.3304 359.802 0.373 0.716 -657.588 926.248
expression 30.6036 30.113 1.016 0.331 -35.674 96.881
expression:C(dose)[T.1] -11.5644 44.330 -0.261 0.799 -109.133 86.004
Omnibus: 1.138 Durbin-Watson: 0.990
Prob(Omnibus): 0.566 Jarque-Bera (JB): 0.983
Skew: -0.483 Prob(JB): 0.612
Kurtosis: 2.199 Cond. No. 501.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.507
Model: OLS Adj. R-squared: 0.425
Method: Least Squares F-statistic: 6.170
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0144
Time: 22:44:45 Log-Likelihood: -69.996
No. Observations: 15 AIC: 146.0
Df Residuals: 12 BIC: 148.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -132.7757 168.513 -0.788 0.446 -499.933 234.382
C(dose)[T.1] 40.5755 16.553 2.451 0.031 4.510 76.641
expression 25.2674 21.223 1.191 0.257 -20.974 71.509
Omnibus: 1.174 Durbin-Watson: 0.963
Prob(Omnibus): 0.556 Jarque-Bera (JB): 1.003
Skew: -0.482 Prob(JB): 0.605
Kurtosis: 2.177 Cond. No. 188.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 22:44:45 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.260
Model: OLS Adj. R-squared: 0.203
Method: Least Squares F-statistic: 4.571
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0521
Time: 22:44:45 Log-Likelihood: -73.040
No. Observations: 15 AIC: 150.1
Df Residuals: 13 BIC: 151.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -295.5981 182.277 -1.622 0.129 -689.384 98.188
expression 48.0254 22.463 2.138 0.052 -0.502 96.553
Omnibus: 1.556 Durbin-Watson: 1.314
Prob(Omnibus): 0.459 Jarque-Bera (JB): 1.049
Skew: 0.370 Prob(JB): 0.592
Kurtosis: 1.936 Cond. No. 172.