AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
7.033 | 0.015 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.743 |
Model: | OLS | Adj. R-squared: | 0.703 |
Method: | Least Squares | F-statistic: | 18.32 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 7.81e-06 |
Time: | 22:49:22 | Log-Likelihood: | -97.474 |
No. Observations: | 23 | AIC: | 202.9 |
Df Residuals: | 19 | BIC: | 207.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 168.1404 | 57.806 | 2.909 | 0.009 | 47.150 289.130 |
C(dose)[T.1] | 26.0680 | 76.432 | 0.341 | 0.737 | -133.906 186.042 |
expression | -19.9615 | 10.085 | -1.979 | 0.062 | -41.070 1.147 |
expression:C(dose)[T.1] | 5.8593 | 12.926 | 0.453 | 0.655 | -21.196 32.915 |
Omnibus: | 2.641 | Durbin-Watson: | 1.917 |
Prob(Omnibus): | 0.267 | Jarque-Bera (JB): | 1.276 |
Skew: | -0.160 | Prob(JB): | 0.528 |
Kurtosis: | 1.892 | Cond. No. | 166. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.740 |
Model: | OLS | Adj. R-squared: | 0.714 |
Method: | Least Squares | F-statistic: | 28.51 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 1.39e-06 |
Time: | 22:49:22 | Log-Likelihood: | -97.597 |
No. Observations: | 23 | AIC: | 201.2 |
Df Residuals: | 20 | BIC: | 204.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 147.7847 | 35.669 | 4.143 | 0.001 | 73.381 222.188 |
C(dose)[T.1] | 60.5142 | 8.014 | 7.551 | 0.000 | 43.797 77.231 |
expression | -16.3951 | 6.182 | -2.652 | 0.015 | -29.291 -3.499 |
Omnibus: | 3.817 | Durbin-Watson: | 1.823 |
Prob(Omnibus): | 0.148 | Jarque-Bera (JB): | 1.548 |
Skew: | -0.205 | Prob(JB): | 0.461 |
Kurtosis: | 1.797 | Cond. No. | 58.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:49:22 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.003206 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.955 |
Time: | 22:49:22 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 83.4511 | 66.331 | 1.258 | 0.222 | -54.492 221.394 |
expression | -0.6310 | 11.144 | -0.057 | 0.955 | -23.806 22.544 |
Omnibus: | 3.356 | Durbin-Watson: | 2.497 |
Prob(Omnibus): | 0.187 | Jarque-Bera (JB): | 1.577 |
Skew: | 0.288 | Prob(JB): | 0.454 |
Kurtosis: | 1.853 | Cond. No. | 56.2 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.108 | 0.172 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.543 |
Model: | OLS | Adj. R-squared: | 0.419 |
Method: | Least Squares | F-statistic: | 4.364 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0296 |
Time: | 22:49:22 | Log-Likelihood: | -69.420 |
No. Observations: | 15 | AIC: | 146.8 |
Df Residuals: | 11 | BIC: | 149.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 9.0347 | 83.052 | 0.109 | 0.915 | -173.762 191.831 |
C(dose)[T.1] | -12.0892 | 122.722 | -0.099 | 0.923 | -282.199 258.021 |
expression | 10.1165 | 14.263 | 0.709 | 0.493 | -21.277 41.510 |
expression:C(dose)[T.1] | 11.8619 | 21.800 | 0.544 | 0.597 | -36.119 59.843 |
Omnibus: | 0.931 | Durbin-Watson: | 0.780 |
Prob(Omnibus): | 0.628 | Jarque-Bera (JB): | 0.847 |
Skew: | -0.451 | Prob(JB): | 0.655 |
Kurtosis: | 2.263 | Cond. No. | 123. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.531 |
Model: | OLS | Adj. R-squared: | 0.453 |
Method: | Least Squares | F-statistic: | 6.797 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0106 |
Time: | 22:49:22 | Log-Likelihood: | -69.619 |
No. Observations: | 15 | AIC: | 145.2 |
Df Residuals: | 12 | BIC: | 147.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -20.2768 | 61.331 | -0.331 | 0.747 | -153.905 113.351 |
C(dose)[T.1] | 54.1623 | 14.914 | 3.632 | 0.003 | 21.668 86.656 |
expression | 15.1946 | 10.465 | 1.452 | 0.172 | -7.607 37.997 |
Omnibus: | 1.545 | Durbin-Watson: | 0.652 |
Prob(Omnibus): | 0.462 | Jarque-Bera (JB): | 1.252 |
Skew: | -0.589 | Prob(JB): | 0.535 |
Kurtosis: | 2.216 | Cond. No. | 49.6 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:49:22 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.016 |
Model: | OLS | Adj. R-squared: | -0.060 |
Method: | Least Squares | F-statistic: | 0.2087 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.655 |
Time: | 22:49:23 | Log-Likelihood: | -75.181 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 57.4035 | 80.012 | 0.717 | 0.486 | -115.451 230.258 |
expression | 6.4781 | 14.179 | 0.457 | 0.655 | -24.155 37.111 |
Omnibus: | 1.243 | Durbin-Watson: | 1.698 |
Prob(Omnibus): | 0.537 | Jarque-Bera (JB): | 0.785 |
Skew: | 0.090 | Prob(JB): | 0.675 |
Kurtosis: | 1.894 | Cond. No. | 46.2 |