AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.026 0.875 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.670
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 12.86
Date: Tue, 28 Jan 2025 Prob (F-statistic): 8.08e-05
Time: 21:57:51 Log-Likelihood: -100.36
No. Observations: 23 AIC: 208.7
Df Residuals: 19 BIC: 213.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 3.6736 168.261 0.022 0.983 -348.502 355.849
C(dose)[T.1] 523.6792 432.088 1.212 0.240 -380.690 1428.049
expression 4.7720 15.879 0.301 0.767 -28.462 38.006
expression:C(dose)[T.1] -41.8384 38.556 -1.085 0.291 -122.537 38.861
Omnibus: 0.315 Durbin-Watson: 1.841
Prob(Omnibus): 0.854 Jarque-Bera (JB): 0.484
Skew: 0.099 Prob(JB): 0.785
Kurtosis: 2.318 Cond. No. 1.28e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.53
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.80e-05
Time: 21:57:51 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 78.8193 154.029 0.512 0.614 -242.480 400.118
C(dose)[T.1] 55.0474 13.828 3.981 0.001 26.204 83.891
expression -2.3240 14.534 -0.160 0.875 -32.641 27.993
Omnibus: 0.367 Durbin-Watson: 1.920
Prob(Omnibus): 0.833 Jarque-Bera (JB): 0.512
Skew: 0.074 Prob(JB): 0.774
Kurtosis: 2.284 Cond. No. 390.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 21:57:51 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.372
Model: OLS Adj. R-squared: 0.342
Method: Least Squares F-statistic: 12.43
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00201
Time: 21:57:51 Log-Likelihood: -107.76
No. Observations: 23 AIC: 219.5
Df Residuals: 21 BIC: 221.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -384.5236 131.816 -2.917 0.008 -658.649 -110.398
expression 42.4279 12.036 3.525 0.002 17.399 67.457
Omnibus: 2.150 Durbin-Watson: 1.764
Prob(Omnibus): 0.341 Jarque-Bera (JB): 1.104
Skew: -0.042 Prob(JB): 0.576
Kurtosis: 1.930 Cond. No. 254.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.000 0.995 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.472
Model: OLS Adj. R-squared: 0.328
Method: Least Squares F-statistic: 3.275
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0626
Time: 21:57:51 Log-Likelihood: -70.513
No. Observations: 15 AIC: 149.0
Df Residuals: 11 BIC: 151.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 117.7341 144.057 0.817 0.431 -199.333 434.801
C(dose)[T.1] -152.7794 292.214 -0.523 0.611 -795.937 490.379
expression -6.0261 17.199 -0.350 0.733 -43.881 31.829
expression:C(dose)[T.1] 23.9330 34.570 0.692 0.503 -52.156 100.022
Omnibus: 1.871 Durbin-Watson: 0.904
Prob(Omnibus): 0.392 Jarque-Bera (JB): 1.445
Skew: -0.691 Prob(JB): 0.486
Kurtosis: 2.366 Cond. No. 375.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.885
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0281
Time: 21:57:51 Log-Likelihood: -70.833
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 68.2824 122.355 0.558 0.587 -198.307 334.872
C(dose)[T.1] 49.2089 15.840 3.107 0.009 14.696 83.721
expression -0.1023 14.592 -0.007 0.995 -31.896 31.691
Omnibus: 2.723 Durbin-Watson: 0.807
Prob(Omnibus): 0.256 Jarque-Bera (JB): 1.874
Skew: -0.845 Prob(JB): 0.392
Kurtosis: 2.621 Cond. No. 133.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 21:57:51 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.071
Method: Least Squares F-statistic: 0.07126
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.794
Time: 21:57:51 Log-Likelihood: -75.259
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 51.6429 157.752 0.327 0.749 -289.159 392.445
expression 4.9951 18.712 0.267 0.794 -35.430 45.420
Omnibus: 0.421 Durbin-Watson: 1.615
Prob(Omnibus): 0.810 Jarque-Bera (JB): 0.507
Skew: 0.026 Prob(JB): 0.776
Kurtosis: 2.100 Cond. No. 133.