AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.269 0.610 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.604
Method: Least Squares F-statistic: 12.19
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000112
Time: 04:03:59 Log-Likelihood: -100.76
No. Observations: 23 AIC: 209.5
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -14.9516 103.942 -0.144 0.887 -232.505 202.602
C(dose)[T.1] 110.8025 115.595 0.959 0.350 -131.141 352.746
expression 12.7412 19.116 0.667 0.513 -27.268 52.751
expression:C(dose)[T.1] -10.4927 21.412 -0.490 0.630 -55.308 34.322
Omnibus: 0.875 Durbin-Watson: 1.779
Prob(Omnibus): 0.646 Jarque-Bera (JB): 0.734
Skew: 0.039 Prob(JB): 0.693
Kurtosis: 2.128 Cond. No. 212.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 18.88
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.48e-05
Time: 04:03:59 Log-Likelihood: -100.91
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 30.4439 46.243 0.658 0.518 -66.017 126.904
C(dose)[T.1] 54.3308 8.920 6.091 0.000 35.724 72.938
expression 4.3781 8.447 0.518 0.610 -13.241 21.997
Omnibus: 0.489 Durbin-Watson: 1.841
Prob(Omnibus): 0.783 Jarque-Bera (JB): 0.585
Skew: 0.120 Prob(JB): 0.746
Kurtosis: 2.256 Cond. No. 59.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:03:59 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.011
Model: OLS Adj. R-squared: -0.036
Method: Least Squares F-statistic: 0.2411
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.628
Time: 04:03:59 Log-Likelihood: -112.97
No. Observations: 23 AIC: 229.9
Df Residuals: 21 BIC: 232.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 115.2488 72.713 1.585 0.128 -35.966 266.464
expression -6.6795 13.602 -0.491 0.628 -34.967 21.608
Omnibus: 3.258 Durbin-Watson: 2.430
Prob(Omnibus): 0.196 Jarque-Bera (JB): 1.555
Skew: 0.286 Prob(JB): 0.460
Kurtosis: 1.862 Cond. No. 56.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.845 0.032 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.701
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 8.600
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00318
Time: 04:03:59 Log-Likelihood: -66.243
No. Observations: 15 AIC: 140.5
Df Residuals: 11 BIC: 143.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -12.5172 112.199 -0.112 0.913 -259.465 234.431
C(dose)[T.1] -214.2631 161.548 -1.326 0.212 -569.828 141.302
expression 15.5315 21.730 0.715 0.490 -32.295 63.358
expression:C(dose)[T.1] 50.6396 31.165 1.625 0.132 -17.953 119.233
Omnibus: 0.258 Durbin-Watson: 1.379
Prob(Omnibus): 0.879 Jarque-Bera (JB): 0.101
Skew: -0.158 Prob(JB): 0.951
Kurtosis: 2.751 Cond. No. 190.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.629
Model: OLS Adj. R-squared: 0.568
Method: Least Squares F-statistic: 10.19
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00259
Time: 04:03:59 Log-Likelihood: -67.857
No. Observations: 15 AIC: 141.7
Df Residuals: 12 BIC: 143.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -139.2399 85.999 -1.619 0.131 -326.616 48.136
C(dose)[T.1] 47.4968 12.926 3.674 0.003 19.333 75.660
expression 40.1507 16.607 2.418 0.032 3.967 76.334
Omnibus: 0.269 Durbin-Watson: 1.114
Prob(Omnibus): 0.874 Jarque-Bera (JB): 0.436
Skew: -0.168 Prob(JB): 0.804
Kurtosis: 2.235 Cond. No. 72.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:03:59 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.212
Model: OLS Adj. R-squared: 0.152
Method: Least Squares F-statistic: 3.503
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0839
Time: 04:03:59 Log-Likelihood: -73.511
No. Observations: 15 AIC: 151.0
Df Residuals: 13 BIC: 152.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -131.0660 120.410 -1.088 0.296 -391.196 129.064
expression 43.4695 23.225 1.872 0.084 -6.706 93.644
Omnibus: 2.225 Durbin-Watson: 2.129
Prob(Omnibus): 0.329 Jarque-Bera (JB): 1.010
Skew: -0.112 Prob(JB): 0.604
Kurtosis: 1.749 Cond. No. 71.8