AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.369 0.551 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.665
Model: OLS Adj. R-squared: 0.612
Method: Least Squares F-statistic: 12.59
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.21e-05
Time: 06:23:50 Log-Likelihood: -100.52
No. Observations: 23 AIC: 209.0
Df Residuals: 19 BIC: 213.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 10.4492 50.868 0.205 0.839 -96.018 116.917
C(dose)[T.1] 137.1100 110.233 1.244 0.229 -93.611 367.831
expression 17.3346 20.006 0.866 0.397 -24.539 59.208
expression:C(dose)[T.1] -34.2321 45.810 -0.747 0.464 -130.114 61.650
Omnibus: 0.246 Durbin-Watson: 2.175
Prob(Omnibus): 0.884 Jarque-Bera (JB): 0.438
Skew: -0.081 Prob(JB): 0.803
Kurtosis: 2.344 Cond. No. 82.9

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.02
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.36e-05
Time: 06:23:50 Log-Likelihood: -100.85
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 26.9306 45.329 0.594 0.559 -67.623 121.484
C(dose)[T.1] 55.0265 9.125 6.030 0.000 35.993 74.060
expression 10.8057 17.798 0.607 0.551 -26.320 47.931
Omnibus: 0.226 Durbin-Watson: 1.968
Prob(Omnibus): 0.893 Jarque-Bera (JB): 0.424
Skew: -0.025 Prob(JB): 0.809
Kurtosis: 2.337 Cond. No. 30.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 06:23:50 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.029
Model: OLS Adj. R-squared: -0.017
Method: Least Squares F-statistic: 0.6232
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.439
Time: 06:23:50 Log-Likelihood: -112.77
No. Observations: 23 AIC: 229.5
Df Residuals: 21 BIC: 231.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 133.4198 68.396 1.951 0.065 -8.818 275.658
expression -21.9229 27.770 -0.789 0.439 -79.674 35.828
Omnibus: 2.460 Durbin-Watson: 2.345
Prob(Omnibus): 0.292 Jarque-Bera (JB): 1.237
Skew: 0.162 Prob(JB): 0.539
Kurtosis: 1.911 Cond. No. 27.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.492 0.497 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.553
Model: OLS Adj. R-squared: 0.432
Method: Least Squares F-statistic: 4.545
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0264
Time: 06:23:50 Log-Likelihood: -69.253
No. Observations: 15 AIC: 146.5
Df Residuals: 11 BIC: 149.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 16.0480 42.848 0.375 0.715 -78.261 110.357
C(dose)[T.1] 202.6187 109.152 1.856 0.090 -37.624 442.862
expression 17.1732 13.859 1.239 0.241 -13.329 47.676
expression:C(dose)[T.1] -49.8663 34.873 -1.430 0.181 -126.620 26.888
Omnibus: 1.671 Durbin-Watson: 1.052
Prob(Omnibus): 0.434 Jarque-Bera (JB): 1.326
Skew: -0.595 Prob(JB): 0.515
Kurtosis: 2.160 Cond. No. 59.9

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.470
Model: OLS Adj. R-squared: 0.382
Method: Least Squares F-statistic: 5.331
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0220
Time: 06:23:50 Log-Likelihood: -70.532
No. Observations: 15 AIC: 147.1
Df Residuals: 12 BIC: 149.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 39.6106 41.239 0.961 0.356 -50.242 129.463
C(dose)[T.1] 47.9942 15.522 3.092 0.009 14.175 81.813
expression 9.2978 13.259 0.701 0.497 -19.592 38.187
Omnibus: 3.870 Durbin-Watson: 0.953
Prob(Omnibus): 0.144 Jarque-Bera (JB): 2.209
Skew: -0.939 Prob(JB): 0.331
Kurtosis: 3.093 Cond. No. 18.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 06:23:50 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.049
Model: OLS Adj. R-squared: -0.025
Method: Least Squares F-statistic: 0.6637
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.430
Time: 06:23:50 Log-Likelihood: -74.927
No. Observations: 15 AIC: 153.9
Df Residuals: 13 BIC: 155.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 51.3458 52.884 0.971 0.349 -62.903 165.595
expression 13.8264 16.971 0.815 0.430 -22.838 50.491
Omnibus: 1.039 Durbin-Watson: 1.779
Prob(Omnibus): 0.595 Jarque-Bera (JB): 0.789
Skew: 0.236 Prob(JB): 0.674
Kurtosis: 1.980 Cond. No. 18.3