AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.735 0.042 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.762
Model: OLS Adj. R-squared: 0.725
Method: Least Squares F-statistic: 20.29
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.80e-06
Time: 23:02:22 Log-Likelihood: -96.590
No. Observations: 23 AIC: 201.2
Df Residuals: 19 BIC: 205.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 90.6989 54.008 1.679 0.109 -22.340 203.738
C(dose)[T.1] 215.3882 86.853 2.480 0.023 33.602 397.174
expression -5.3460 7.877 -0.679 0.506 -21.832 11.140
expression:C(dose)[T.1] -24.8531 12.978 -1.915 0.071 -52.016 2.310
Omnibus: 1.748 Durbin-Watson: 2.122
Prob(Omnibus): 0.417 Jarque-Bera (JB): 1.433
Skew: 0.455 Prob(JB): 0.489
Kurtosis: 2.184 Cond. No. 198.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.716
Model: OLS Adj. R-squared: 0.688
Method: Least Squares F-statistic: 25.24
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.39e-06
Time: 23:02:22 Log-Likelihood: -98.619
No. Observations: 23 AIC: 203.2
Df Residuals: 20 BIC: 206.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 153.1898 45.815 3.344 0.003 57.621 248.759
C(dose)[T.1] 49.6920 8.062 6.164 0.000 32.875 66.509
expression -14.5011 6.664 -2.176 0.042 -28.403 -0.600
Omnibus: 1.058 Durbin-Watson: 1.782
Prob(Omnibus): 0.589 Jarque-Bera (JB): 0.942
Skew: 0.290 Prob(JB): 0.625
Kurtosis: 2.196 Cond. No. 80.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:02:22 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.177
Model: OLS Adj. R-squared: 0.138
Method: Least Squares F-statistic: 4.522
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0455
Time: 23:02:22 Log-Likelihood: -110.86
No. Observations: 23 AIC: 225.7
Df Residuals: 21 BIC: 228.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 234.1921 72.936 3.211 0.004 82.514 385.870
expression -23.0368 10.833 -2.127 0.045 -45.565 -0.508
Omnibus: 1.891 Durbin-Watson: 2.633
Prob(Omnibus): 0.389 Jarque-Bera (JB): 1.067
Skew: -0.112 Prob(JB): 0.587
Kurtosis: 1.969 Cond. No. 76.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.011 0.917 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.549
Model: OLS Adj. R-squared: 0.426
Method: Least Squares F-statistic: 4.464
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0278
Time: 23:02:23 Log-Likelihood: -69.327
No. Observations: 15 AIC: 146.7
Df Residuals: 11 BIC: 149.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 219.4989 160.687 1.366 0.199 -134.171 573.168
C(dose)[T.1] -412.0566 296.221 -1.391 0.192 -1064.034 239.921
expression -22.1376 23.338 -0.949 0.363 -73.505 29.230
expression:C(dose)[T.1] 66.4997 42.631 1.560 0.147 -27.332 160.331
Omnibus: 4.735 Durbin-Watson: 0.837
Prob(Omnibus): 0.094 Jarque-Bera (JB): 2.221
Skew: -0.868 Prob(JB): 0.329
Kurtosis: 3.737 Cond. No. 346.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.895
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0279
Time: 23:02:23 Log-Likelihood: -70.826
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 82.5946 142.412 0.580 0.573 -227.694 392.884
C(dose)[T.1] 49.4176 15.868 3.114 0.009 14.845 83.991
expression -2.2078 20.664 -0.107 0.917 -47.231 42.815
Omnibus: 2.566 Durbin-Watson: 0.805
Prob(Omnibus): 0.277 Jarque-Bera (JB): 1.795
Skew: -0.821 Prob(JB): 0.408
Kurtosis: 2.581 Cond. No. 129.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:02:23 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.072
Method: Least Squares F-statistic: 0.05466
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.819
Time: 23:02:23 Log-Likelihood: -75.269
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 50.8264 183.518 0.277 0.786 -345.640 447.293
expression 6.1883 26.469 0.234 0.819 -50.994 63.371
Omnibus: 0.309 Durbin-Watson: 1.625
Prob(Omnibus): 0.857 Jarque-Bera (JB): 0.457
Skew: -0.065 Prob(JB): 0.796
Kurtosis: 2.155 Cond. No. 128.